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ABSTRACT

Recently, in-display fingerprint sensors have been widely adopted
in newly-released smartphones. However, we find this new tech-
nique can leak information about the user’s fingerprints during a
screen-unlocking process via the electromagnetic (EM) side chan-
nel that can be exploited for fingerprint recovery. We propose
FPLogger to demonstrate the feasibility of this novel side-channel
attack. Specifically, it leverages the emitted EM emanations when
the user presses the in-display fingerprint sensor to extract finger-
print information, then maps the captured EM signals to fingerprint
images and develops 3D fingerprint pieces to spoof and unlock the
smartphones. We have extensively evaluated the effectiveness of
FPLogger on five commodity smartphones equipped with both
optical and ultrasonic in-display fingerprint sensors, and the results
show it achieves promising similarities in recovering fingerprint
images. In addition, results from 50 end-to-end spoofing attacks
also present FPLogger achieves 24% (top-1) and 54% (top-3) success
rates in spoofing five different smartphones.
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1 INTRODUCTION

The in-display fingerprint sensor [27] has rapidly gained popularity
in recent years, and major smartphone manufacturers have incor-
porated this technology into their latest Android smartphones, such
as the Samsung Galaxy S22, OnePlus 10 Pro, and Huawei P30 Pro.
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One key factor driving its popularity is its ability to support a more
sleek and modern design, as the in-display sensor can be seamlessly
placed under the device’s display screen, eliminating the need for a
separate button as required by traditional fingerprint sensors. Ac-
cording to a recent market survey [49], smartphones equipped with
in-display fingerprint sensors have dominated a significant market
share, with nearly 32% and 24% in Asia-Pacific and North America,
respectively. The global market for this technology is expected to
grow to approximately 11 billion dollars by the end of 2025.

Fingerprints are widely regarded as a secure form of biometric
authentication for smartphones as they are less susceptible to being
captured, leaked, or spoofed compared to other commonly used
authentication methods on the Android platform, such as numeric
or alphanumeric passcodes, pattern locks, and face recognition.
In particular, unlike passcodes and unlocking patterns, which can
be inferred through finger movement-recovering attacks such as
smudge attacks [21, 34, 72], shoulder-surfing attacks [8, 37, 67],
and wireless side-channel attacks for movement tracking [35, 73],
fingerprints are immune to such reported attacks as they are not
composed of finger movements. On the other hand, fingerprints
are less likely to be leaked or captured in high quality compared to
faces, which can be easily spoofed and exploited to bypass dedicated
authentication measures [32, 47, 51, 63] in daily scenarios, i.e., facial
information exposed in social media or work badges. Additionally,
in contrast to faces that can be captured through the front camera
by malicious apps or compromised mobile OS platforms, fingerprint
data is processed only within the fingerprint sensor module and
simply reports success or failure to the mobile OS without any
redundant data [27], reducing the risk of using software-based
methods [1, 4, 14, 65, 69] for capturing or leaking fingerprints.

However, we surprisingly found that fingerprints can be leaked
from the in-display fingerprint sensor of a smartphone without
compromising its hardware and operating system, which has not
been reported in prior work, to the best of our knowledge. That
is because the in-display fingerprint sensor’s authentication pro-
cess inevitably emits electromagnetic (EM) emanations that contain
sufficient information to recover the fingerprint. Specifically, the
authentication process begins when a finger is placed on the in-
display fingerprint sensor. The sensor then scans the patterns of
the pressed finger to generate the fingerprint image and converts it
to a data stream for further verification. This series of actions of
users and the sensor’s electronics will emit EM emanations that
can be easily captured by small antennas (e.g., coils). After a thor-
ough investigation, we discovered that the captured EM emanations
could reveal the fingerprint image scanned by the in-display finger-
print sensor, and the recovered fingerprint image is of high quality
to reconstruct a 3D fingerprint to bypass in-display fingerprint
authentication systems on COTS smartphones.
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Moreover, our newly discovered EM side-channel attack can
overcome many limitations of previous fingerprint-oriented at-
tacks [4, 14, 21, 34, 65, 69, 72]. In particular, in contrast to previ-
ous approaches [21, 34, 72], our attack can recover unseen finger-
prints from the EM emanations without requiring prior knowl-
edge of the victim’s fingerprints. Moreover, unlike previous ap-
proaches [4, 19, 20, 65], our attack neither needs to compromise the
hardware or software of the victim’s smartphone and its in-display
fingerprint sensor nor relies on expensive and bulky devices (e.g.,
oscilloscope) to measure the EM emanations, making it achievable
in a common attack scenario, which is on par with prior works on
electromagnetic side-channel attacks [3, 38]. In this scenario, an
attacker can place a compromised wireless charging power bank
in a rental station or modifies a public wireless charging facility
and use the wireless charging coil as the antenna to capture EM
emanations in close proximity because a smartphone has to attach
to those compromised devices for battery charging purposes.

In this paper, we propose a novel framework named FPLogger
to demonstrate the feasibility of our reported EM side-channel
attack. Specifically, FPLogger first continuously captures nearby
EM emanations to monitor if a finger is being placed on the in-
display fingerprint sensor to initiate the authentication process.
Once a finger-pressing activity on the in-display fingerprint sen-
sor is detected, it then selects segments that contain fingerprint
information from the captured EM signals, and adaptively extracts
featuremaps that reflect the fingerprint patterns. Next, these feature
maps are fed into a pre-trained convolutional variational autoen-
coder (VAE) model to generate the recovered 2D fingerprint images.
Furthermore, a denoising diffusion model is deployed to take these
recovered 2D fingerprint images and remove noises to improve the
recognizability of the output fingerprints. Finally, the recovered 2D
fingerprint images are converted into 3D fingerprint pieces via 3D
printing, which can be utilized for bypassing smartphone authenti-
cation systems if the in-display fingerprint sensors can be spoofed.

We have evaluated the effectiveness of FPLogger on five differ-
ent smartphones that are equipped with both optical-based (One-
Plus 10 Pro, OPPO A96, Xiaomi Redmi K20 Pro, and Huawei P30
Pro) and ultrasonic-based (Samsung Galaxy S10) in-display finger-
print sensors with a compromised wireless charging power bank.
Accordingly, the attack distance between the power bank’s coil and
the in-display fingerprint sensor ranges from 2mm to 10mm due to
different smartphones’ specifications. Evaluation results show that
FPLogger achieves promising performance in recovering finger-
print images with high similarities, ranging from 50.3% to 75.0%, to
the original fingerprints. FPLogger also presents promising scal-
ability towards several practical impact factors, including different
smartphones, coils for capturing EM emanations, finger types, and
attacking distances. Moreover, we conduct 50 trials of end-to-end
spoofing attacks, and the results demonstrate that FPLogger can
spoof these smartphones with 24% and 54% success rates in one
attempt (top-1) and three attempts (top-3), respectively. In addition,
we also explore and discuss the potential of attacking in-display
fingerprint sensors registered with real fingerprints.
Ethical consideration.We take ethical considerations seriously.
All fingerprint pieces are built via a 3D printer using fingerprint
images from a public dataset for scientific research [57], and these

(a) Optical. (b) Ultrasonic.

(c) Workflow of a smartphone fingerprint authentication.

Fig. 1: Optical and ultrasonic in-display fingerprint sensors for fingerprint

authentication in the smartphone unlocking process.

pieces are only used for fingerprint registration and unlocking the
smartphone to collect EM emanations for empirical evaluations.
Note that FPLogger and our attacking device have never been
released to any other parties.
Responsible disclosure. We have disclosed our findings to the
relevant in-display fingerprint sensor and smartphone manufactur-
ers, including OPPO, Vivo, and Samsung. As of this writing, we are
working with them closely on practical mitigation solutions. More
details (e.g., code, dataset, demo), updates, and appendices will be re-
leased at the project website [45]: https://em-fingerprints.github.io.
Contributions. We summarize the contributions as follows:
• Anovel side-channel attack.We introduce a novel side-channel
attack that leverages the EM emanations emitted from the unlock-
ing process of using the in-display fingerprint sensor to unlock a
smartphone to recover the user’s fingerprint.
• An end-to-end attack framework.We propose and implement
an end-to-end attack framework, FPLogger, to demonstrate the
feasibility of this new side-channel attack. By leveraging the EM
emanations emitted during the unlocking process, it recovers fin-
gerprint images and reconstructs 3D fingerprint pieces to spoof
the fingerprint authentication system and gain access to the smart-
phone. To the best of our knowledge, FPLogger is the first study
to attack in-display fingerprint sensors on smartphones.
• Empirical evaluation. FPLogger is evaluated on five commod-
ity smartphones equipped with different in-display fingerprint
sensors (optical and ultrasonic). It is also evaluated with a set of
impact factors. Our results show that it can effectively recover
3D fingerprints from the EM emanations, and successfully spoof
smartphone’s fingerprint authentication systems.
2 PRELIMINARIES

2.1 In-display Fingerprint Sensors

The in-display fingerprint sensor is a technology that has been uti-
lized in most newly-released smartphones, enabling users to unlock
their devices using their fingerprints without a physical fingerprint
sensor on the phone’s surface. Instead, an optical or ultrasonic fin-
gerprint sensor (e.g., Synaptics’ Clear ID [59]) is embedded beneath
the LCD/OLED touchscreen, typically located on the bottom. As is
shown in Fig. 1a and Fig. 1b, when a user places their finger on the
designated area of the screen, the thin-film transistor (TFT) array
of the in-display fingerprint sensor emits either light from back
light [2] or ultrasonic waves generated from piezoelectric effect [48]
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to scan the fingerprint and capture an image of the distinctive ridges
and valleys on the fingerprint pattern. Then, the bounced light or
ultrasonic signals are converted to pixel-cell electric currents that
represent the signal strength in the gray-scale bitmap, which gen-
erates a contour image to describe the fingerprint [48]. Finally,
the generated fingerprint image will be compared to the stored
fingerprint data to determine whether the user is authorized to
unlock the device. This novel unlocking technology has gained
popularity because of its seamless and intuitive user experience
and its ability to protect against certain types of attacks that other
unlocking methods may be vulnerable to, such as shoulder-surfing
attacks [8, 67] or eavesdropping attacks [12, 29, 46, 73].

2.2 Smartphone Fingerprint Authentication

Fig. 1c shows a typical workflow of fingerprint authentication for
unlocking a smartphone, which comprises four steps. (i) The user
simply places the finger on the sensor to unlock the smartphone
with an in-display fingerprint sensor. (ii) The sensor uses emitted
light or ultrasonic waves to capture a fingerprint image. This fin-
gerprint image contains the unique patterns of ridges and valleys,
highlighted by the shadows and the time it takes for the light or
ultrasonic waves to bounce back. (iii) Once the sensor has captured
the fingerprint patterns, it then applies an algorithm to extract
features and convert the image into a biometric data stream, which
is a digital representation of the distinguishing characteristics of
the fingerprint, i.e., location and depth of ridges and valleys. (iv)
The extracted biometric data stream is compared to a database of
stored fingerprint data to determine if the captured fingerprint
matches any authorized users [27, 62]. (v) If a match is found, the
smartphone is unlocked, and the user gains access to the device.
On the contrary, if the fingerprint is unauthorized, the unlocking
request is denied, and the device remains locked.

2.3 Physical Principles of EM Emanation in

Human-Touchscreen Interactions

Emanations from finger-coupling effects. Unlike traditional
fingerprint sensors (e.g., button-based), an in-display fingerprint
sensor is usually integrated with the capacitive touchscreen, where
the burst of EM emanations induced by the finger-coupling ef-
fect [29, 41, 46] can be more apparent and detectable for finger-
print recovery. As illustrated by the equivalent circuit changes in
Fig. 2a, when the finger is moving toward the touchscreen, the
finger-coupling effect changes the local capacitance of Δ𝐶𝑓 and re-
sults in the changing voltage 𝑉𝑡 (𝑡) of the touchscreen. The voltage
changes Δ𝑉𝑡 (𝑡) (Equation 1) further induce an instant burst of elec-
tromagnetic emanation. Note that 𝑉𝑇𝑋 (𝑡) and 𝑅𝑇𝑋 are the driven
voltage and resistance of the touch sensor grid (electrode), andℱ−1
is the Inverse Fourier Transform (IFT) to represent frequency-related
impedance Δ𝑍 𝑓 in time-domain.

𝑉𝑡 (𝑁𝑇 ) (𝑡 ) = 𝑉𝑇𝑋 (𝑡 ) · 𝑒
−𝑡/(𝑅𝑇𝑋𝐶0 )
𝑅𝑇𝑋𝐶0

(Not touching)

𝑉𝑡 (𝑇 ) (𝑡 ) = 𝑉𝑇𝑋 (𝑡 ) · 𝑒
−𝑡/(2𝑅𝑇𝑋𝐶0ℱ−1 (Δ𝑍𝑓 ) )

2𝑅𝑇𝑋𝐶0ℱ−1 (Δ𝑍𝑓 )
(Touching)

Δ𝑍𝑓 =1/( 1
1/( 𝑗2𝜋 𝑓 Δ𝐶𝑓 )

+ 1
1/( 𝑗4𝜋 𝑓 𝐶0 )

) (Impedance)

Δ𝑉𝑡 (𝑡 ) = 𝑉𝑡 (𝑁𝑇 ) − 𝑉𝑡 (𝑇 ) (Induce a burst of EM emanation)

(1)

Emanations from the in-display fingerprint sensor. When
the finger is placed on the in-display fingerprint sensor, the sensor
starts to capture the fingerprint image, extract unique features from
the patterns, and then checks whether it is from an authorized
user. As illustrated in § 2.1, this smartphone authentication process
induces current changes of each cell in the transistor array of the in-
display fingerprint sensor , which further results in voltage changes
Δ𝑉𝑠 (𝑡) (Equation 2) in the in-display fingerprint sensor module,
inciting additional electromagnetic emanations as follows:

Δ𝑉𝑠 (𝑡 ) = 𝑉𝑠𝑐𝑎𝑛 +𝑉𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 +𝑉𝑎𝑢𝑡ℎ, (2)

where𝑉𝑠𝑐𝑎𝑛 ,𝑉𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 , and𝑉𝑎𝑢𝑡ℎ represent the fingerprint sensor’s
voltage changes in scanning the fingerprint to capture the image
patterns, extracting distinctive features, and matching the captured
fingerprint with stored fingerprint data, respectively. Note that
the optical-based and ultrasonic-based in-display sensors are only
different in the emitted signals when scanning fingerprints, without
differences in the quality of the radiated EM emanations.
Measurement of the EM emanations. As presented in § 3.1, the
electromagnetic emanations from the in-display fingerprint authen-
tication process can be captured andmeasured by the coil connected
to a micro-controller unit (MCU) that has been integrated into a
compromised wireless power bank. Fig. 2b shows the equivalent
circuit of harvesting the electromagnetic emanations by leveraging
the coil, whose impedance 𝑍𝑐 is shown in Equation 3:

𝑍𝑐 =
1
𝑅𝑚
+ 𝑗2𝜋 𝑓𝐶𝑚 +

1
(𝑅𝑐 + 𝑗2𝜋 𝑓 𝐿𝑐 )

= 𝑒−𝑅𝑚𝑡/𝐶𝑚 + 𝑠𝑖𝑛 (𝑅𝑐𝑡/𝐿𝑐 ), (3)

where 𝐶𝑚 , 𝑅𝑚 , 𝐿𝑐 , and 𝑅𝑐 are the impedance parameters (capac-
itance, resistance, and inductance) related to the materials and
turns of the coil. As such, the overall electromagnetic emanations
𝑉𝑚 (𝑡) that are scavenged in the coil are the superposition of EM
signals emitted from (i) the capacitive touchscreen resulting from
the finger-coupling effect, (ii) the integrated in-display fingerprint
sensor when scanning the fingerprint and verification, and (iii)

workload changes on the CPU and memory, which is measured as:
𝑉𝑐 (𝑡 ) = |Δ𝑉𝑡 (𝑡 ) | 𝑐𝑜𝑠 (2𝜋 𝑓𝑡 𝑡 ) + |Δ𝑉𝑠 (𝑡 ) | 𝑐𝑜𝑠 (2𝜋 𝑓𝑠𝑡 ) +

∑
𝑉𝑤 (𝑓𝑤 , 𝑡 )

𝑉𝑚 (𝑡 ) = 𝑉𝑐 (𝑡 ) · 𝑒
−𝑡/(𝑍𝑐𝐶𝑑 )
𝑍𝑐𝐶𝑑

· ℎ (𝑡 ) (Captured EM emanation)
(4)

where 𝑉𝑐 (𝑡) represents the superposition of EM emanations at dif-
ferent frequencies emitted from the mentioned sources, 𝑓𝑡 and 𝑓𝑠
are the EM frequencies of the touchscreen and the in-display finger-
print sensor,

∑
𝑉𝑤 (𝑓𝑤 , 𝑡) is the combination of EM signals from the

workload changes of CPU and memory, which presents multiple
frequencies 𝑓𝑤 range from few 𝑘𝐻𝑧 to 𝐺𝐻𝑧 [9, 19, 20]. 𝐶𝑑 is the
distance-related capacitance between the smartphone and the coil
(𝐶𝑑 ∝ 1/𝑑) at vertical direction, and ℎ(𝑡) represents the impulse re-
sponse function, which involves a voltage amplifier and a low-pass
filter in the MCU [29]. Therefore, the strength of the electromag-
netic emanations in a smartphone fingerprint authentication can
be measured by monitoring the voltage changes of the coil.

Fig. 2c presents the analysis of captured EM emanations in the
frequency domain (sampling frequency = 20𝑘𝐻𝑧) when the smart-
phone is screen off (silver area), screen on while not pressing the
touchscreen (grey area), pressing elsewhere of the touchscreen (blue
area), or presses the in-display fingerprint sensor (red area). It shows
that the smartphone radiates EM signals at different frequencies
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(a) Finger-coupling effects in pressing in-display fingerprint sensor.

(b) EM emanation measurements using the coil in a power bank.

(c) Analysis of captured EM emanations in the frequency domain.

Fig. 2: Illustration of finger-coupling effects and EM emanations in unlocking

the smartphone using the in-display fingerprint sensor (a) and (b), and fre-

quency analysis of captured EM emanations (c).

(e.g., CPU and memory [9], touchscreen [56]) at an idle running sta-
tus. When the user wakes up the smartphone and presses the touch-
screen, the finger-coupling effects induce extra EM emanations that
lead to the increase of EM signal’s strength at approximately 𝑓 =

500𝐻𝑧 (silver area→ grey area→ blue area). Furthermore, since the
in-display fingerprint sensor is integrated with the touchscreen, EM
signals emitted from the sensors when scanning the fingerprints for
verification could also be superimposed into the captured EM ema-
nations, resulting in a higher EM amplitude (blue area→ red area)
at the similar frequency. Therefore, the captured EM emanations
in the coil are the superposition of EM signals from the aforemen-
tioned EM sources, which cause the leakage of users’ fingerprint
information in the in-display fingerprint authentication process.

3 MOTIVATION AND THREAT MODEL

3.1 A Motivating Example

This section presents a real scenario that motivates this study. To
unlock and access the smartphone, a user places the finger on the
touchscreen, where the in-display fingerprint sensor is located. The
sensor scans the fingerprint to determine if it comes from an autho-
rized user and then unlocks the smartphone if a match is detected.
However, during this authentication process, an attacker can inter-
cept and collect EM emanations from the smartphone, extract the
segment that contains fingerprint information, and recover the 2D
fingerprint image and 3D fingerprint. In Fig. 3a, we illustrate the
changes of the captured EM emanations in this unlocking process
with the in-display fingerprint sensor, and Fig. 3b shows the three
stages with different signal patterns as follows:
❶ When the finger approaches the in-display fingerprint sensor, the
finger-coupling effects cause a shift in the local capacitance of the
touchscreen [29, 41, 46], which leads to a burst of EM emanations.
The amplitude of the captured EM emanations reaches the highest
when the finger fully contacts the touchscreen.

(a) Captured EM emanation signal.

(b) Three steps of in-display fingerprint recognition.

Fig. 3: A motivating example: a user places the finger on the in-display fin-

gerprint sensor to unlock the smartphone. The attacker can leverage the EM

emanations to recover the user’s fingerprint to build 3D pieces to spoof the

in-display fingerprint sensor.

❷ Once the finger is placed on the sensor, the sensor utilizes light
or ultrasonic waves (§ 2.1) to capture the fingerprint image, extract
its unique features, and convert it to the data stream [27, 62]. This
series of sensor activities also emits EM emanations that contain
information reflecting the fingerprint patterns, and these emana-
tions are superimposed with the EM signals from ❶. As such, the
attacker can exploit such EM emanations to build 3D fingerprint
pieces to spoof the in-display fingerprint sensor of the smartphone.
❸ The data stream of the input fingerprint is compared with stored
fingerprint data to determine if it matches a registered fingerprint.
If a match is detected, the smartphone will be unlocked. The corre-
sponding changes of the EM emanation signal in this stage primar-
ily result from the processing units and alterations in the display
content on the touchscreen when entering the home screen.

In particular, an attacker can first exploit the EM emanation in
a screen-unlocking process to trigger the attack and then extract
features from the collected emanations that contain fingerprint pat-
terns. Next, the extracted features are used to recover the fingerprint
image and build the 3D fingerprint piece to spoof the in-display
fingerprint authentication system to unlock the smartphone.

3.2 Threat Model

Attack scenario. We consider a common scenario where an at-
tacker initially places a compromised wireless charging power bank
in a rental station or modifies a public wireless charging facility
(Fig. 5). Then, the attacker can leverage the wireless charger’s coil
to capture EM emanations during the screen-unlocking process
from the smartphone equippedwith an in-display fingerprint sensor
(Fig. 6). Subsequently, the attacker can exploit the EM emanations to
recover fingerprint images and construct fraudulent 3D fingerprint
pieces, which are further used to spoof the in-display fingerprint
sensor and unlock the smartphone, enabling unauthorized access to
sensitive user privacy. We consider a close attacking distance (e.g.,
2mm–10mm) between the smartphone and the coil, which is on
par with prior works on electromagnetic side channels [3, 20, 38].
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Fig. 4: Overview of FPLogger.

Fig. 5: Illustration of public wireless charging stations and power bank rental

services. An attacker can maliciously compromise these facilities to use their

coils to capture EM emanations.

Assumptions.We assume the victim is using a smartphone with
an in-display fingerprint sensor. The attacker can compromise a
wireless charging station (or a power bank) in public rental services,
leveraging the coil to capture EM emanations. Note that the attacker
cannot compromise the victim’s smartphone, including cracking
firmware to obtain stored fingerprint data or access the readings of
the in-display fingerprint sensor. Furthermore, the attacker does not
have a line-of-sight (LoS) view of the victim’s fingers and is unable
to capture fingerprint images from the victim’s hands through
high-definition (HD) cameras.

4 DESIGN OF FPLOGGER

4.1 Overview of FPLogger

Fig. 4 presents the overview of FPLogger, which leverages EM em-
anations from a smartphone to recover 3D fingerprints for spoofing
in-display fingerprint sensors. (i) FPLogger first collects EM emana-
tions emitted by the victim’s smartphone during a screen-unlocking
action using the coil of a wireless charging power bank attached
to the smartphone. (ii) Then, it applies filters and moving-variance
windows to detect the finger-pressing event and segment out EM
signals with fingerprint information. (iii) Next, the obtained EM
signal is processed to extract unique features that reflect the input
fingerprint patterns. (iv) FPLogger uses the pre-trained convo-
lutional VAE model to map extracted features to 2D fingerprint
images and (v) a denoising diffusion model is deployed to remove
noise and generate fingerprints with recognizable resolutions. (vi)
FPLogger can construct 3D fingerprint pieces using the recovered
fingerprint images to spoof the in-display fingerprint sensor of the
victim’s smartphone and gain access to more sensitive information.

4.2 EM Emanation Measurements

To measure the EM emanations from the smartphone during a
screen-unlocking process, we compromise a commodity wireless
charging power bank by (i) leveraging its coil as an antenna to
capture the EM emanations, (ii) staffing a tiny micro-controller unit
(MCU) to record signals, and (iii) integrating a signal relay module
to control the start/stop of wireless charging. In practice, we tear up
an EGOMAGPOWER 2 wireless charging power bank [39] and con-
nect its coil to an analog input pin of an Arduino Nano MCU [42]
with an HFD4/3-S signal relay module [26] as is shown in Fig. 7.

Fig. 6: Attack scenario. Fig. 7: Compromised power bank.

As the size of the MCU and signal relay module are significantly
smaller than that of the power bank, an attacker can easily insert
these hardware components into the power bank and restore it
to its original appearance. When the user presses the in-display
fingerprint sensor, the signal relay module could suddenly stop
and restart the wireless charging process to create a 3–5 seconds
interruption for capturing EM emanations from the coil. The power
bank samples captured signals with an analog-to-digit converter
at a sampling frequency of 20𝑘𝐻𝑧, which is more than enough to
capture signal variances in EM emanations [29] emitted from the
touchscreen and the in-display fingerprint sensor (e.g., 500𝐻𝑧). Note
that FPLogger only requires one interruption to record the EM sig-
nals, which is believed not to raise the victim’s suspicion because
interruptions sometimes happen in a normal wireless charging
process due to power fluctuations or firmware glitches [64].

4.3 Finger-pressing Detection

Finger-pressing detection and extraction. When the victim at-
taches the compromised wireless power bank to the smartphone,
FPLogger continuously monitors the captured EM emanations
from the coil and applies a Savitzky–Golay (S-G) filter to remove
noises in the collected sequential EM signals without distorting
the signal shapes [7]. The filtered EM signal is then normalized to
a range from 0 to 1, and exploits the normalized signal to detect
a smartphone-unlocking action to trigger the attack and extract
fingerprint information. In practice, we can leverage the signal’s
variance of the EM emanations to detect a finger-pressing on the
touchscreen and further apply a moving variance window to extract
the corresponding segment that contains fingerprint information.
Fig. 8a shows an example of applying a moving variance window
(threshold = 0.1) to the captured EM signal (sampling frequency

= 20𝑘𝐻𝑧), where the finger-pressing event can be detected from
the appearance of the first peak, and we can extract the EM segment
that contains fingerprint information between the first peak and
the second peak in the moving-variance signal.
False finger-pressing rejection. After extracting the segment
from the captured EM emanations, FPLogger needs to decide
whether the finger-pressing is on the in-display fingerprint sen-
sor or other areas of the capacitive touchscreen. In § 2.3, we have
demonstrated that the amplitudes of the captured EM emanations
differ in four finger-pressing status (Fig. 2c). Therefore, we apply the
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(a) Finger-pressing detection and extraction.

(b) LDA of EM amplitude. (c) Recognition results.

Fig. 8: Finger-pressing event detection and extraction (a), and false finger-

pressing rejection based on the LDA of EM amplitude (b) and the recognition

results (c) (SO: Screen off, NT: Screen on, no touching, PE: Press elsewhere on

the touchscreen, PI: Press the in-display fingerprint sensor).

Fast Fourier Transform (FFT) to the EM emanations and calculate the
Linear Discriminant Analysis (LDA) [66] of the amplitude of the EM
signals in the frequency domain as shown in Fig. 8b, which presents
distinguishable features of different finger-pressing scenarios. As
such, we can use the LDA features to recognize the finger-pressing
status and reject false finger-pressing events resulting from press-
ing other areas of the touchscreen. In practice, we collect 1,000 EM
samples from the four finger-pressing status and use 80% of them
to train a k-NN [43] classifier to recognize the four finger-pressing
events and the rest 20% samples to evaluate its effectiveness. Fig. 8c
shows the results of recognizing finger-pressing status to reject
false finger-pressing, where the k-NN classifier achieves 99.75%
accuracy. Hence, FPLogger can effectively detect finger-pressing
on the in-display fingerprint sensor and reject false positive cases
when pressing elsewhere on the touchscreen.

4.4 ASE Feature Extraction

After detecting a finger-pressing event on the in-display fingerprint
sensor, FPLogger automatically extracts and selects the segment
𝐹 (𝑡) that contains the fingerprint information from the captured
EM emanations. It then extracts Adaptively-Selected Envelope (ASE)
features from this informative segment to distinguish between a bit
of 0 and 1 of the EM emanations on mobile devices such as smart-
phones [10]. The envelopes describe features such as amplitude,
rising/falling time, and peak/troughs of the captured EM emana-
tions that distinguish different fingerprints, and the ASE approach
suits different sampling frequencies and bit rates. To achieve this,
we leverage the signal envelope method from the MATLAB (version
2022a) signal processing toolbox to generate the upper envelope
curve with peak analysis with a frame length of 0.001𝑓 , where
𝑓 represents the sampling frequency (e.g., 20𝑘𝐻𝑧) of the coil for
capturing EM emanations. Fig. 9 shows the extracted ASE features
from the segmented EM emanation signal in a 0.02 seconds interval.

Fig. 9: Adaptive-selected envelope (ASE) features (𝑒𝐹
𝑖,𝑗
(𝑡 )) extracted from EM

emanation signal that contains fingerprint information.

Adaptive feature selection. In practice, FPLogger first selects a
few envelopes with significant differences depending on the trans-
mitted bit value, which represents the 0/1 data stream generated
in fingerprint scanning that reflects the differences in fingerprint
patterns (e.g., ridge and valley) [30]. This selection process is carried
out each time fingerprint recognition is performed, and a set of
envelope features is adaptively chosen based on the segmented EM
emanations. As such, FPLogger defines a maximum distinguishable
range of 𝑒𝐿

𝑖,𝑗
(lower bound) to 𝑒𝑈

𝑖,𝑗
(upper bound) for each envelope

𝑒𝑖, 𝑗 to differentiate a bit value of 0 and 1, where 𝑖 and 𝑗 represent the
starting and ending indices of the select frame at the timestep 𝑡 . As
such, 𝑒𝑈

𝑖,𝑗
is initially set to the minimum between these enveloped

peaks and further optimized as the minimum value among all posi-
tive peaks greater than a given threshold 1.5 · 𝑒𝐿

𝑖,𝑗
. For instance, we

set 𝑒𝐿
𝑖,𝑗

and 𝑒𝑈
𝑖,𝑗

as 0.4 and 0.6 in the frame shown in Fig. 9, respec-
tively. After that, we calculate 𝑒𝐿

𝑖,𝑗
as the maximum among positive

and negative peaks less than 𝑒𝑈
𝑖,𝑗
. This heuristic method enables us

to obtain an approximate maximum range that can distinguish the
positive and negative peaks caused during the transmission of a bit 1
and 0. FPLogger then selects the top-𝑛𝐸 (e.g., 𝑛𝐸 = 4, 8, . . . , etc.) en-
velopes that have the largest difference less than 𝑒𝐿

𝑖,𝑗
or exceeds 𝑒𝑈

𝑖,𝑗
.

Fingerprint data extraction. Once the adaptive features are cho-
sen, FPLogger extracts the envelope data 𝑒𝐹

𝑖,𝑗
(𝑡) that contains the

input fingerprint information, i.e., patterns of ridges and valleys
from the envelope 𝑒𝑖, 𝑗 (𝑡). Next, FPLogger applies a down-sampling
approach [33] to normalize the extracted fingerprint sequence, and
concatenates 𝑛𝐹 segments from a moving binning window with
length 𝑙𝐹 = 0.002 seconds (e.g., 𝑛𝐹 = 𝑒𝐹

𝑖,𝑗
(𝑡)/𝑙𝐹 ) to prevent informa-

tion loss. Note that the down-sampling method, frame length, and
binning window can be adjusted based on the required resolution
of the target fingerprint images. Therefore, FPLogger exploits such
process for each possible fingerprint input and generates sequences
reflecting fingerprint features, and the sequences are reshaped to
𝑟 𝑓 × 𝑟 𝑓 resolution 2D arrays to train the models for recovering
recognizable 2D fingerprints, where 𝑟 𝑓 is the resolution of target
fingerprint images (e.g., 𝑟 𝑓 = 64). More details about the notations
used in ASE feature extraction are listed in the project website [45].

4.5 Convolutional VAE Model

To achieve fingerprint image reconstruction, we train a convolu-
tional variational autoencoder (VAE) model to map extracted 𝑟 𝑓 ×𝑟 𝑓
ASE features to 𝑟 𝑓 × 𝑟 𝑓 resolution fingerprint images (e.g., 𝑟 𝑓 = 64).
The convolutional layers in the VAE architecture enable the model
to effectively capture spatial (e.g., position, peaks/troughs) and tem-
poral (e.g., amplitude, rising/falling time) information in the input
data, making it well-suited for fingerprint image reconstructions.
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Fig. 10: Architecture of the convolutional VAE model.

The convolutional VAE model can learn latent space representa-
tions, handle high-dimensional input data, such as 2D arrays, while
avoiding overfitting issues that arise with traditional neural net-
works. It also leverages dropout layers and regularization methods
to help improve the generalization performance. In addition, the
KL divergence loss term in the convolutional VAE loss function
makes the learned latent space smooth and continuous, which is
significant to the image reconstruction tasks [22].

Fig. 10 depicts the architecture of the convolutional VAE model
we implemented in FPLogger. The model comprises an encoder
and a decoder, both of which are composed of convolutional layers.
In particular, the encoder consists of four 2D convolutional layers
with 32, 64, 128, and 256 output channels produced by the convolu-
tion. Each convolutional layer uses ReLU as the activation function,
and the kernel size, stride, and padding are set to 4, 4, and 1, respec-
tively. Then, a flatten layer and a linear layer are used to reshape the
feature maps extracted by the convolutional layers to an encoded
vector and map it to the decoder. The decoder consists of four trans-
pose 2D convolutional layers with 128, 64, 32, and 1 output channels
with the same activation function, kernel size, stride, and padding as
the encoder. Finally, an sigmoid function maps the decoded features
to a value between 0 and 1 to build the grayscale arrays and the
forward process in the convolutional VAE model extracts spatial
information and encodes the input to latent space representations,
and map it for fingerprint image reconstruction. In practice, we se-
lect the Adam optimizer [31] and employ the binary cross-entropy
(BCE) with the KL divergence regularization [68] to measure the
loss of the convolutional VAE model in the training process.

After obtaining the trained convolutional VAE model, we could
use it to map extracted feature maps from the captured EM emana-
tions to 2D fingerprint images. Such fingerprint images are often
blurry, missing important fingerprint patterns, and therefore can-
not be used to launch spoofing attacks directly. Next, we introduce
a denoising diffusion model to remove such noises.

4.6 Denoising Diffusion Model

While the convolutional VAE model is known for its ability to learn
latent representations of the images, the recovered fingerprint im-
ages often contain noise that can obscure important features, such
as the fingerprint patterns of ridges and valleys. These noises may
impact the similarities between the recovered fingerprints and the
victim’s fingerprints, which is crucial for FPLogger to launch the
spoofing attack. Therefore, we design and develop a denoising diffu-
sion model based on the concept of Denoising Diffusion Probabilistic
Model (DDPM) [25] to remove noise and recover the blurred pat-
terns to enhance the clarity of the fingerprint images. It leverages
a deep learning architecture to model the noise distribution and
iteratively refine the image through a reverse process, resulting in
a more accurate representation of the original fingerprint patterns.

Fig. 11: Illustration of the denoising diffusion model. Note that the noisy

fingerprint images are the output of the convolutional VAE model (§ 4.5) and

are being denoised in the reverse process.

Fig. 11 shows the proposed denoising diffusion model, which com-
prises two primary processes: forward process and reverse process.
Note that we use the noisy fingerprints generated from the convo-
lutional VAE model as the input of the denoising diffusion model.
Forward process. The forward process describes the diffusion of
noise into original fingerprint images, which effectively learns the
noise distribution in the recovered fingerprint images generated
by the convolutional VAE model. Given a data point 𝑝0 sampled
from the data distribution of a recovered fingerprint image 𝑓 (𝑥)
(𝑝0 ∼ 𝑓 (𝑥)), the forward process models the generation of noisy
fingerprints at timestep 𝑡 from the original fingerprints as follows:

𝑓 (𝑝𝑡 | 𝑝𝑡−1 ) = ℱ (𝑝𝑡 ; 𝑛𝑜𝑖𝑠𝑒 (𝑡, 𝑡 − 1) ), (5)

where 𝑛𝑜𝑖𝑠𝑒 (𝑡, 𝑡 − 1) represents the noises from 𝑝𝑡−1 to 𝑝𝑡 , pro-
ducing a new latent variable 𝑝𝑡 with the distribution 𝑓 (𝑝𝑡 |𝑝𝑡−1).
The forward process continues this process to understand the noise
distribution in 𝑓 (𝑥) comparative to the original image 𝑓0 (𝑥) , which
is then utilized in the reverse process for denoising the images.
Reverse process. The reverse process is implemented for denoising
the noisy images by exploiting deep learning architecture (e.g., U-
Net [55]) to learn the mapping functions between the noisy images
and their corresponding clean fingerprint images by minimizing the
difference between the original images and the denoised outputs.
The reverse process at timestep 𝑡 can be represented as follows:

𝑟 (𝑝𝑡−1 | 𝑝𝑡 ) = ℛ(𝑝𝑡−1 ; 𝑑𝑒𝑛𝑜𝑖𝑠𝑒 (𝑡 − 1, 𝑡 ) ), (6)

where 𝑑𝑒𝑛𝑜𝑖𝑠𝑒 (𝑡 − 1, 𝑡) is the denoising process from 𝑝𝑡−1 to 𝑝𝑡
using the deep learning models, i.e., U-Net. Here if we apply the
reverse formula for all data points in a noisy fingerprint image from
the convolutional VAE model (§ 4.5), we can remove the noisy parts
and obtain a more recognizable fingerprint.
Implementation details. In practice, we use the recovered finger-
print images from the training set of the convolutional VAE model
as the noisy images and the original fingerprint images to train this
denoising diffusionmodel [54]. Furthermore, we implement a U-Net
neural network and use it in the reverse process to denoise finger-
print images. Specifically, this U-Net contains four encoders and
four decoders, each consisting of a convolutional block comprising
two convolutional layers, with ReLU as the activation function and
max-pooling as the pooling method. Note that both forward and
reverse processes are relevant since they are trained jointly. In the
training process, we use theMean Squared Error (MSE) loss function
with Adam optimizer [31] and evaluate the model on the recovered
fingerprint images generated by the convolutional VAE model from
the testing set. Therefore, the combination of the convolutional VAE
model and the denoising diffusion model enables FPLogger to re-
cover more recognizable fingerprint images that retain the essential
features and pattern details required for reconstructing 3D finger-
print pieces to spoof smartphones’ in-display fingerprint sensors.
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(a) 3ds Max. (b) Materialise Magics. (c) Prototype.

Fig. 12: 3Dfingerprint pieces construction from2D images. (a) 3dsMax converts

the 2D grayscale fingerprint images to 3D models, (b) Materialise Magics to

reshape the 3D models to 15𝑚𝑚 × 15𝑚𝑚 × 1𝑚𝑚, and (c) A prototype of 3D

print fingerprint pieces from 3D printer.

4.7 3D Fingerprint Construction

After obtaining the recovered 2D fingerprint images, FPLogger can
reconstruct 3D fingerprint pieces that simulate real fingerprints to
spoof in-display fingerprint sensors in commodity smartphones.
The 3D fingerprint reconstruction consists of three steps as follows:
Step 1: 2D fingerprint images to 3D fingerprint models. The
first step to developing 3D fingerprint pieces is to convert 2D finger-
print images to 3D models with textures of ridges and valleys. As is
shown in Fig. 12a, we use Autodesk 3ds Max (version 2021) to draw
the fingerprint texture on a square piece based on its grayscale, and
then export 3D model files of the fingerprint pieces.
Step 2: Reshape 3D fingerprintmodels.After building 3D finger-
print models for all images in the dataset, we need to guarantee the
size and thickness of the reshaped 3D fingerprint models can be eas-
ily attached to the surface of fingers to simulate a real fingerprint.
Therefore, as is demonstrated in Fig. 12b, we utilize Materialise
Magics (version 21.0) to reshape these 3D fingerprint models to
15𝑚𝑚 × 15𝑚𝑚 rectangles with the thickness of 1𝑚𝑚.
Step 3: Printing the 3D fingerprint pieces.At last, we print these
well-conditioned 3D fingerprint models with a CNC 3D printer [61]
using materials of semi-transparent photopolymer such as light-
activated resin. Fig. 12c shows the prototype of a fingerprint piece
produced by the 3D printer, where we can observe the texture of
ridges and valleys patterns of the fingerprint. Such 3D fingerprint
pieces can be exploited to simulate the victim’s fingerprint to de-
ceive the in-display fingerprint sensors [17]. Note that each printed
3D fingerprint piece costs approximately 0.05 dollars (5 cents).

5 EVALUATION

5.1 Experimental Setup and Data Collection

5.1.1 Public fingerprint dataset. Human fingerprints are very sensi-
tive personal data, and illegally collecting themmay result in ethical
violations. Therefore, we utilize fingerprint images from a public
dataset, Sokoto Coventry Fingerprint Dataset [57] (SOCOFing1), to
build 3D fingerprint pieces for fingerprint registration and unlock-
ing the smartphone in evaluating FPLogger. In particular, SOCOF-
ing contains 6,000 fingerprint images (each image is gray-scaled
with 96 × 103 pixels) collected from 600 Africans (450 male partici-
pants and 150 female participants, fingerprints of both left and right
hands) and is released for academic purposes only. Note that each
image is grayscale with 96 × 103 pixels, and we resize the image
1Fingeprint images are available at: https://www.kaggle.com/ruizgara/socofing. In this
study, we spent approximately 40 days in 3D fingerprint construction and 3D printing,
3 months for data collection (e.g., fingerprint registration in the smartphones, EM
signal collection), and 20 days for model training, fine-tuning, and evaluation.

Fig. 13: Illustration of the experimental setup leveraging 3Dprinted fingerprint

pieces to register the user and unlock the smartphone.

to 64 × 64 pixels by removing extra margins and rescaling. More-
over, while this process will result in information loss, we show
that it does not affect the authenticity of the fingerprint, and the
built 3D fingerprints from these images can be used for fingerprint
registration and screen unlocking (§ 5.1.2 and § 6.1).

5.1.2 Experimental setup. Fig. 13 shows the experimental setup of
leveraging the 3D fingerprint pieces from SOCOFing. As illustrated
in § 4.7, we build these thin 3D fingerprint pieces and stick them to
a human finger covered with opaque black tape to simulate human
finger-pressing actions. Note that black tape is used for covering
the real fingerprint of the data collector to avoid interferences, and
our institution’s IRB board has approved this research. To enable
better recovering performance, we press the in-display fingerprint
sensor (optical) of a OnePlus 10 Pro at 12 different orientations
(i.e., 0◦ (360◦), 30◦, 60◦, . . . , 330◦) to collect a total of 72,000 data
samples. We separately repeat the same procedure to collect data
samples from the other four smartphones equipped with in-display
fingerprint sensors (§ 5.3.1) and other four coils (§ 5.3.2), and con-
duct experiments with the measurement coil in the compromised
power bank underneath the smartphone. All data processing, fea-
ture extraction, and model training are conducted on a desktop
running Windows 10 with 32GB memory, Intel i7-9700K CPU, and
an NVIDIA GeForce RTX 2080Ti GPU. In practice, we train the
convolutional VAE model and the denoising diffusion model using
samples collected from 3D fingerprint pieces of 480 participants
(80%, #1–#480), and evaluate the performance and conduct end-
to-end spoofing attacks (§ 6) with the samples collected from the
other 120 participants (20%, #481–#600). In practice, we initialize
the learning rate as 0.001 with a batch size of 32, and train the
convolutional VAE model and the denoising diffusion model for
5,000 epochs and 1,000 epochs, respectively. Note that there is no
overlap of data samples between the training set and the testing set.

5.2 Evaluation Metrics

To evaluate the effectiveness of FPLogger, we investigate four
metrics that are used for comparing similarities: average hash [23]
(aHash), different hash [13] (dHash), perceptual hash [15] (pHash),
and cosine similarity [60]. Fig. 14a shows these four metrics in com-
paring similarities between the original fingerprint and a distorted
fingerprint, a rotated fingerprint (90◦), and a different fingerprint.
We conducted an experiment on 1,000 different fingerprint images
and found that pHash is robust to fingerprint distortion and rota-
tion, and can distribute two different fingerprints. In comparison,
the other three metrics still present high similarities between two
different fingerprints, which may increase the false positive rate in
fingerprint recognition (Fig. 14b). Therefore, based on the empirical
results, we select the pHash similarity as the evaluation metric
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(a) Comparison with distorted, rotated, and different fingerprints.

(b) Similarity results of four evaluation metrics.

Fig. 14: Investigation to explore the best evaluation metric for comparing

image similarity between fingerprints.

for comparing the similarities between output fingerprints from
FPLogger and original fingerprints (details in Fig. 20 and § 6.3).

We propose FingerHash to calculate pHash similarity between
the original and recovered fingerprints in Algorithm 1. It first takes
the recovered and original fingerprint images and converts them to
gray-scale images (line 1–2). Next, it uses a loop structure to apply
the Discrete Cosine Transform [52] (DCT) to calculate their pHash
values by converting the fingerprint data streams from the spatial
domain to the frequency domain (line 3–8). At last, the algorithm
calculates the hamming distance between two pHash sequences to
obtain the similarity of the two fingerprints (line 9–10).

5.3 Effectiveness of Fingerprint Image Recovery

We evaluate FPLogger’s performance in recovering the 2D fin-
gerprint images by comparing the pHash similarity of two output
imageswith the original fingerprints: (i) the recovered fingerprint im-

ages from the convolutional VAE model; (ii) the denoised fingerprint
images from the denoising diffusion model. That is because finger-
print images recorded by the smartphone are stored and encrypted
in the in-display fingerprint sensor, whose firmware disallows ac-
cess by users or the OS [27], and we cannot obtain those images
in our current threat model. Thus, we conduct experiments consid-
ering different impact factors by following the same procedure: (i)
different smartphones with both optical and ultrasonic in-display
fingerprint sensors, (ii) different coils for capturing the EM ema-
nations, (iii) different fingers, and (iv) different attacking distances.

5.3.1 Evaluation on different smartphones. Since different smart-
phones usually integrate in-display fingerprint sensors from differ-
ent vendors (e.g., OnePlus series: Clear ID [59], Samsung Galaxy
series: Goodix [50]), we separately collect data to train models by
conducting further experiments on four other different commod-
ity smartphones: OPPO A96 (PFUM10), Xiaomi Redmi K20 Pro
(M1903F11I), Huawei P30 Pro (VOG-AL00), and Samsung Galaxy
S10 (SM-G973F). Note that we select these smartphones based on
our investigation of 20 newly-released smartphones [45] , and the
results show 85% of them choose optical-based and only 15% choose
ultrasonic-based in-display fingerprint sensors. Therefore, we select
one smartphone (SamsungGalaxy S10) with an ultrasonic in-display
fingerprint sensor, while the other four smartphones (including

Algorithm 1: FingerHash: pHash similarity for fingerprints.
Input: 𝑓𝑟 : recovered fingerprint image. 𝑓𝑜 : original fingerprint

image. 𝑙𝑠 : rescaled length (width) of 𝑓𝑟 and 𝑓0.
Output: 𝑆𝑖𝑚 (𝑓𝑟 , 𝑓𝑜 ) : Image similarity (0–1) between 𝑓𝑟 and 𝑓𝑜 .

1 𝑓𝑟 ← 𝑟𝑒𝑠𝑐𝑎𝑙𝑒 (𝑓𝑟 , 𝑙𝑠 ) , 𝑓𝑜 ← 𝑟𝑒𝑠𝑐𝑎𝑙𝑒 (𝑓𝑜 , 𝑙𝑠 ) ⊲ rescale 𝑓𝑟 and 𝑓𝑜 to
𝑙𝑠 × 𝑙𝑠 images with an initial 𝑙𝑠 = 32.

2 𝑓𝑟 ← 𝑐𝑜𝑛𝑣𝑒𝑟𝑡_𝑔𝑟𝑎𝑦𝑠𝑐𝑎𝑙𝑒 (𝑓𝑟 ) , 𝑓𝑜 ← 𝑐𝑜𝑛𝑣𝑒𝑟𝑡_𝑔𝑟𝑎𝑦𝑠𝑐𝑎𝑙𝑒 (𝑓𝑜 ) ⊲

convert fingerprint images to gray-scale 𝑓𝑟 and 𝑓𝑜 .
3 for each point 𝑓𝑟 (𝑖, 𝑗 ) ∈ 𝑓𝑟 and 𝑓𝑜 (𝑖, 𝑗 ) ∈ 𝑓𝑜 do

4 𝐹𝑟 = 𝑐 (𝑢 )𝑐 (𝑣) ∑𝑖

∑
𝑗 𝑓𝑟 (𝑖, 𝑗 )𝑐𝑜𝑠

[
(𝑖+1/2)𝜋

𝑁𝑟
𝑢

]
𝑐𝑜𝑠

[
( 𝑗+1/2)𝜋

𝑁𝑟
𝑣

]
,

5 𝐹𝑜 = 𝑐 (𝑢 )𝑐 (𝑣) ∑𝑖

∑
𝑗 𝑓𝑜 (𝑖, 𝑗 )𝑐𝑜𝑠

[
(𝑖+1/2)𝜋

𝑁𝑜
𝑢

]
𝑐𝑜𝑠

[
( 𝑗+1/2)𝜋

𝑁𝑜
𝑣

]
.

⊲ Discrete Cosine Transform to obtain 𝐹𝑟 (𝑢, 𝑣) and 𝐹𝑜 (𝑢, 𝑣) .
6 𝐹𝑑𝑜𝑖𝑟 = 𝐹𝑟 (𝑢, 𝑣) [0 : 8, 0 : 8], 𝐹𝑑𝑜𝑖𝑜 = 𝐹𝑜 (𝑢, 𝑣) [0 : 8, 0 : 8]. ⊲ Obtain

the upper left 8 × 8 pixels with high frequencies.
7 𝐻𝑟 = (𝐹𝑑𝑜𝑖𝑟 > 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (𝐹𝑑𝑜𝑖𝑟 ) ) , 𝐻𝑜 = (𝐹𝑑𝑜𝑖𝑜 > 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (𝐹𝑑𝑜𝑖𝑜 ) ) . ⊲

Obtain pHash values from 𝐹𝑑𝑜𝑖𝑟 and 𝐹𝑑𝑜𝑖𝑜 .
8 𝑆𝑖𝑚 (𝑓𝑟 , 𝑓𝑜 ) = ℎ𝑎𝑚𝑚𝑖𝑛𝑔_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝐻𝑟 , 𝐻𝑜 ) . ⊲ Compute similarity

with Hamming distance between pHash values 𝐻𝑟 and 𝐻𝑜 .
9 Output fingerprint similarity 𝑆𝑖𝑚 (𝑓𝑟 , 𝑓𝑜 ) (0–1) between 𝑓𝑟 and 𝑓𝑜 .

the OnePlus 10 Pro) are equipped with optical in-display finger-
print sensors. Fig. 15 shows the evaluation results of FPLogger on
the five smartphones, where we find FPLogger achieves pHash
similarities of 0.565, 0.396, 0.537, 0.546, and 0.472 in recovering
fingerprint images captured by the in-display fingerprint sensors of
OnePlus 10 Pro, OPPO A96, Redmi K20 Pro, Huawei P30 Pro, and
Samsung S10, respectively. After applying the denoising diffusion
model, the corresponding pHash similarities are enhanced to 0.750,
0.503, 0.604, 0.707, and 0.543, which reflects an approximate boost
of 12.5%–32.7% in fingerprint recovery. In addition, we notice that
FPLogger performs well in smartphones like OnePlus 10 Pro and
Huawei P30 Pro while presenting lower pHash similarities in the
fingerprint samples collected from OPPO A96. This is because the
OPPO A96 has a mechanism that verifies whether the finger covers
the entire area of the in-display fingerprint sensor before initiating
fingerprint recognition [6]. As a result, it is necessary to increase
the contact area between the finger with a 3D fingerprint piece
and the touchscreen. However, enlarging the contact area can lead
to finger-coupling effects that generate additional interference in
the collected EM emanations [29]. Nevertheless, FPLogger have

demonstrated the feasibility of recovering fingerprint images from

the EM emanations emitted by in-display fingerprint sensors from

different commodity smartphones.

5.3.2 Evaluation on different coils. As we have illustrated in § 2.3,
the captured EM emanations are related to the properties (e.g.,
materials, shapes, and turns) of the receiving coil. Therefore, we
investigate the coils’ impact by individually collecting data to train
models and conducting experiments on four other coils with dif-
ferent characteristics, denoting as 𝑐𝑜𝑖𝑙2 (rectangle, 30𝑚𝑚 × 23𝑚𝑚,
15 turns), 𝑐𝑜𝑖𝑙3 (rectangle, 42𝑚𝑚 × 29𝑚𝑚, 27 turns), 𝑐𝑜𝑖𝑙4 (circle,
42𝑚𝑚, 10 turns), and 𝑐𝑜𝑖𝑙5 (circle, 38𝑚𝑚, 20 turns). Note that 𝑐𝑜𝑖𝑙1
(circle, 40𝑚𝑚, 22 turns) is the coil of the compromised wireless
charging power bank in § 4.2. Fig. 16 shows the evaluation results
of FPLogger using different coils (𝑐𝑜𝑖𝑙1–𝑐𝑜𝑖𝑙5) to launch attacks,
where FPLogger achieves pHash similarities of 0.565, 0.521, 0.625,
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Fig. 15: Evaluation results of different COTS smartphones with the optical or

ultrasonic in-display fingerprint sensors.

Fig. 16: Evaluation results of different coils with various widths, heights, and

turns for EM emanation measurement.

Fig. 17: Evaluation results of different types of the finger on the hand from

thumb to little finger.
Fig. 18: Evaluation results of different attacking distances between the smart-

phone and the wireless charging coil.

0.582, and 0.544 in recovering fingerprint images from EM em-
anations captured by different coils (𝑐𝑜𝑖𝑙1–𝑐𝑜𝑖𝑙5). The denoising
diffusion model can improve corresponding pHash similarities to
0.750, 0.688, 0.781, 0.697, and 0.719, which shows an increment of
19.8%–32.7% in fingerprint recovery. We observe that different coils
show limited impact on the performance of FPLogger because
coils’ characteristics only affect the EM signal’s amplitude resulting
from the finger-coupling effect when a user presses the in-display
fingerprint sensor. Therefore, FPLogger can extract fingerprint in-

formation from the recorded EM emanations, and use the recovered

fingerprints to spoof in-display fingerprint sensors.

5.3.3 Evaluation on different finger types. The five fingers on a
hand have different characteristics, i.e., sizes and shapes. Thus, we
also evaluate FPLogger’s performance when recovering finger-
prints of different fingers: thumb, index finger, middle finger, ring
finger, and little finger. In practice, we divide the testing set into five
subsets based on the type of fingers and evaluate the average pHash
similarities in each group. Fig. 17 shows the evaluation results of
FPLogger in recovering fingerprint images from different types of
fingers, where we find that FPLogger achieves pHash similarities
of 0.418, 0.608, 0.593, 0.581, and 0.625 in recovering fingerprint
images of different types of fingers. Likewise, our proposed de-
noising diffusion model increases the pHash similarities to 0.656,
0.781, 0.765, 0.744, and 0.806, respectively. Interestingly, we find
that FPLogger performs better in recovering fingerprint images
of the four fingers, index finger, middle finger, ring finger and little

finger than fingerprints collected from the thumb. The main reason
is that in the SOCOFing dataset we used, most fingerprint images
collected from thumbs usually only contain partial representations
of the real fingerprints while ignoring most of the detailed patterns
of the fingerprints (e.g., arches, left/right loops, and whorls [53]).
Consequently, these images contain limited fingerprint information
and are prone to misprediction in the fingerprint recovery process.
In summary, FPLogger achieves acceptable performance in recover-

ing fingerprints from thumbs, and achieves excellent performance in

recovering fingerprints from other fingers.

5.3.4 Evaluation on different attacking distances. We have pre-
sented in Fig. 2b that the vertical distance between the smartphone
and the coil could impact the capacitance 𝐶𝑑 , which further affects
the EM emanation measurements based on Equation 4. Hence, we
set four other attacking distances (e.g., 4𝑚𝑚, 6𝑚𝑚, 8𝑚𝑚, and 10𝑚𝑚)
between the smartphone and the receiving coils to explore such
an impact. Note that the default distance between the smartphone
and the compromised wireless charging power bank is 2𝑚𝑚. Fig. 18
shows the evaluation results of FPLogger at different attacking
distances, which indicate FPLogger achieves pHash similarities of
0.565, 0.573, 0.526, 0.477, and 0.351 in recovering fingerprint images
from EM emanations captured at different attacking distances, while
the denoising diffusion model increases these pHash similarities to
0.750, 0.752, 0.712, 0.625, and 0.448, respectively. The performance
in recovering fingerprints decreases as the attacking distance in-
creases. This is because a longer attacking distance between the
smartphone and the receiving coil leads to EM emanations with
lower amplitudes and more noise. As such, we design the attack
scenario of FPLogger when a compromised power bank wirelessly
charges the smartphone in proximity settings that follow the re-
search line of similar EM side-channel studies [5, 9, 19, 20, 29, 38].
Note that FPLogger can also work in other directions in a similar
attacking distance by re-collecting data and fine-tuning models,
which can recover fingerprints with good performance.

Summary. In a nutshell, we have demonstrated the feasibility of
FPLogger in recovering fingerprints from the emitted EM emana-
tions under different scenarios, i.e., different smartphones, coils,
finger types, and attacking distances. The above evaluation results
show the recovered fingerprint images, after applying the denoising
diffusion models, present acceptable pHash similarities compared
with the original fingerprints. Furthermore, we also find consider-
able deviations in the evaluation results because of the distinctions
between different fingerprints. Below, we conduct 50 trials of end-
to-end attacks (§ 6) to explore the effectiveness of leveraging the
3D-printed fingerprints from FPLogger’s output fingerprints to
spoof different smartphones’ in-display fingerprint sensors.
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Fig. 19: pHash similarities with different fingerprint orientations (0◦–360◦)
that are recognizable to the in-display fingerprint sensor.

6 END-TO-END ATTACKS

6.1 End-to-end Attack Evaluation Steps

We conduct 50 trials of end-to-end attacks using the aforementioned
five smartphones (each smartphone for 10 trials), including four
with optical in-display fingerprint sensors and one with ultrasonic
in-display fingerprint sensors. In particular, we randomly select
fingerprints from both left and right hands of #481–#600 partici-
pants (unseen testing set) and then use the 3D fingerprint pieces
generated by FPLogger to spoof the in-display fingerprint sensors.
In each attack trial, we press the in-display fingerprint sensor three
times and then calculate the top-1 (T-1) and top-3 (T-3) success rates.
Specifically, in calculating the top-3 success rate, we consider one
successful unlocking as a successful attacking trial within the three
attempts. The reason why we choose the top-3 success rate as the
metric is because a typical smartphone authentication system usu-
ally allows the user to press the in-display fingerprint sensor several
times (e.g., 3–5 attempts) to unlock the smartphone if one attempt is
recognized. Among the five smartphones that we have investigated
in § 5.3.1, all of their in-display fingerprint sensors allow up to four
unlocking attempts. Once the user failed to pass the verification for
four times, the smartphone automatically turns off the in-display
fingerprint sensor and then switches to the passcode-unlocking
screen until the smartphone is successfully unlocked. The time cost
of an end-to-end attack is approximately 3 to 5 minutes, including
capturing EM emanations (5–6 s), recovering fingerprints (36–48 s),
and 3D printing pieces to unlock the smartphone (2.5–3 minutes).

6.2 Threshold of Recognizable pHash

In a real-life scenario, the user can press the in-display fingerprint
sensor at any orientation, resulting in different captured finger-
print images. However, the in-display fingerprint sensor can still
recognize these fingerprint images and unlock the smartphone. Be-
fore launching end-to-end attacks via FPLogger, we first explore
the minimum pHash threshold of an authorized fingerprint that
is enough to be recognized by the in-display fingerprint sensor.
To investigate such a threshold, we compute the pHash values of
the 6,000 fingerprint images rotated at an angle from 0◦ to 360◦ in
Fig. 19, where we know the minimum pHash value for the same fin-
gerprint is approximately 0.25. Once the similarity of the recovered
fingerprints exceeds such a threshold, it can theoretically spoof the
in-display fingerprint sensor and unlock the victim’s smartphone.
Furthermore, when the pHash similarity exceeds 0.6, the in-display
fingerprint sensor can recognize almost all fingerprints with differ-
ent orientations to unlock the smartphone. As such, our recovered
fingerprint images with pHash similarity ranging from 0.565 to
0.750 as illustrated in § 5.3 could be exploited to launch end-to-end
attacks to spoof the smartphone’s in-display fingerprint sensors.

Fig. 20: Top-3 success and fail attack trials, and spoofing success rate (%) with

different ranges of pHash similarity.

6.3 End-to-end Attack Results

Table 1 presents the detailed results of the 50 end-to-end attacks,
including the pHash similarities of the denoised fingerprints and
the attacking success rate in one attempt (T-1) and three attempts
(T-3). We know that the attacking success rate in spoofing different
smartphones is approximately 24% (12/50 spoofed) with only one
attempt, and 54% (27/50 spoofed) with three attempts of all end-
to-end attack trials. In addition, Fig. 20 shows the top-3 success
rate with different ranges of pHash similarity, where we also find
that the denoised fingerprints with higher pHash similarity to the
original fingerprints normally present higher success rates in the
spoofing attacks. For instance, trial #4, #21, and #25 present 100%
and 100% success rates in one attempt and three attempts, with
pHash similarities of 0.781, 0.750, and 0.767, respectively.
Cases with high pHash similarity but low success rate. In
particular, we also find several trials present abnormal results, i.e.,
the denoised fingerprints have high pHash similarities to the origi-
nal fingerprints but cannot spoof the in-display fingerprint sensor.
For instance, trials such as #7, #24, and #26 are with high pHash
similarities 0.603, 0.682, and 0.593, but they all failed in spoofing
the in-display fingerprint sensor to unlock the smartphone.

Fig. 21 shows original fingerprints and output fingerprints of
FPLogger from eight trials of the end-to-end attacks. Four cases (#4,
#6, #25, and #36) are fingerprints with high pHash similarities and
high spoofing success rates, and other four cases (#7, #24, #26, and
#38) with high pHash similarities but low spoofing success rates.We
discover that the main reason that leads to these abnormal attack
trials is mispredictions from the proposed denoising diffusionmodel.
For instance, in trial #38, the fingerprint contains the pattern “arch”,
whereas the denoising diffusion model mistakenly predicts this
pattern as “left loop”. Likewise, the denoising diffusion model also
predicts an incorrect “line shape” in the denoised fingerprint while
there is a “whorl” in the original fingerprints in the attack trial #7.
This is because the denoising diffusion model is trained on a dataset
with limited fingerprint samples. As a result, the output fingerprints
may contain mispredicted patterns that cannot be recognized by
the in-display fingerprint sensor. Note that it is possible to enhance
the success rates of the spoofing attacks by leveraging a broader
high-resolution fingerprint dataset to train the denoising diffusion
model, and we leave it to our future work (§ 7.3).

7 DISCUSSION

7.1 Countermeasures

We formulated the following two directions of countermeasures
and discussed them with smartphone manufacturers, and provided
practical solutions for mitigating the threat of our attacks.
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Table 1: End-to-end attack results, including 50 trials of five commodity smartphones with optical or ultrasonic in-display fingerprint sensors (each 10 trials

attacks). We randomly select 3D fingerprint pieces from both left and right hands in the testing set. T-1: one attempt, T-3: three attempts, “#”: Spoofing denied, “ ”:

Spoofing succeeded, smartphone unlocked. (trials with * are cases in Fig. 21).

Trial Smartphone Sensor Type Fingerprint No. Finger Type
Denoised Fingerprint

pHash Similarity
T-1 Results

T-3 Results Spoofing

Success ?

1st 2nd 3rd

1

O
n
e
P
l
u
s
1
0
P
r
o

Optical No. 593, Male, Left hand Index finger 0.688     ✓
2 Optical No. 586, Male, Left hand Little finger 0.593 # # #  ✓
3 Optical No. 544, Male, Left hand Middle finger 0.656 # #   ✓
4
∗ Optical No. 506, Male, Left hand Ring finger 0.781     ✓
5 Optical No. 545, Male, Left hand Thumb 0.422 # # # # ✗
6
∗ Optical No. 482, Male, right hand Index finger 0.625 # #   ✓

7
∗ Optical No. 535, Male, right hand Little finger 0.603 # # # # ✗
8 Optical No. 540, Female, right hand Middle finger 0.531 # # # # ✗
9 Optical No. 529, Male, right hand Ring finger 0.656     ✓
10 Optical No. 513, Male, right hand Thumb 0.375 # # # # ✗

11

O
P
P
O
A
9
6

Optical No. 481, Female, Left hand Index finger 0.313 # # # # ✗
12 Optical No. 507, Male, Left hand Little finger 0.359 # # # # ✗
13 Optical No. 517, Male, Left hand Middle finger 0.625 # #   ✓
14 Optical No. 533, Male, Left hand Ring finger 0.562 # # #  ✓
15 Optical No. 561, Male, Left hand Thumb 0.406 # # # # ✗
16 Optical No. 566, Male, right hand Index finger 0.593 # # #  ✓
17 Optical No. 579, Male, right hand Little finger 0.656     ✓
18 Optical No. 534, Female, right hand Middle finger 0.453 # # # # ✗
19 Optical No. 547, Male, right hand Ring finger 0.563 # # #  ✓
20 Optical No. 528, Female, right hand Thumb 0.500 # # # # ✗

21

R
e
d
m
i
K
2
0
P
r
o

Optical No. 583, Male, Left hand Index finger 0.750     ✓
22 Optical No. 579, Male, Left hand Little finger 0.656 # # #  ✓
23 Optical No. 575, Male, Left hand Middle finger 0.453 # # # # ✗
24
∗ Optical No. 485, Male, Left hand Ring finger 0.575 # # # # ✗

25
∗ Optical No. 511, Male, Left hand Thumb 0.767     ✓

26
∗ Optical No. 529, Male, right hand Index finger 0.593 # # # # ✗

27 Optical No. 562, Female, right hand Little finger 0.719     ✓
28 Optical No. 564, Male, right hand Middle finger 0.562 # # # # ✗
29 Optical No. 555, Male, right hand Ring finger 0.688 # #   ✓
30 Optical No. 538, Male, right hand Thumb 0.593 # # # # ✗

31

H
u
a
w
e
i
P
3
0
P
r
o

Optical No. 532, Male, Left hand Index finger 0.719     ✓
32 Optical No. 540, Female, Left hand Little finger 0.531 # # # # ✗
33 Optical No. 547, Male, Left hand Middle finger 0.781     ✓
34 Optical No. 563, Male, Left hand Ring finger 0.500 # # # # ✗
35 Optical No. 570, Male, Left hand Thumb 0.625 # #   ✓
36
∗ Optical No. 492, Female, right hand Index finger 0.813     ✓

37 Optical No. 582, Male, right hand Little finger 0.688 # #   ✓
38
∗ Optical No. 481, Male, right hand Middle finger 0.682 # # # # ✗

39 Optical No. 594, Male, right hand Ring finger 0.656 # # #  ✓
40 Optical No. 523, Male, right hand Thumb 0.565 # # # # ✗

41

S
a
m
s
u
n
g
G
a
l
a
x
y
S
1
0 Ultrasonic No. 524, Male, Left hand Index finger 0.563 # # # # ✗

42 Ultrasonic No. 531, Male, Left hand Little finger 0.688     ✓
43 Ultrasonic No. 547, Male, Left hand Middle finger 0.656 # #   ✓
44 Ultrasonic No. 557, Male, Left hand Ring finger 0.593 # # #  ✓
45 Ultrasonic No. 590, Male, Left hand Thumb 0.531 # # # # ✗
46 Ultrasonic No. 596, Male, right hand Index finger 0.563 # # # # ✗
47 Ultrasonic No. 588, Male, right hand Little finger 0.625 # #   ✓
48 Ultrasonic No. 495, Male, right hand Middle finger 0.719     ✓
49 Ultrasonic No. 505, Male, right hand Ring finger 0.521 # # # # ✗
50 Ultrasonic No. 494, Male, right hand Thumb 0.656 # # # # ✗

Mitigating the EM emanations. FPLogger exploits EM emana-
tions from a screen-unlocking process to recover victims’ finger-
prints for spoofing the in-display fingerprint sensors. As such, one
potential countermeasure is to eliminate the EM emanations in the
screen-unlocking process when pressing the in-display fingerprint
sensor. One possible solution is to require endorsement from ven-
dors to redesign the sensor hardware [24] or add proper shielding
to mitigate the leakage of the EM emanations [46]. Furthermore,
we can apply electromagnetic interference (EMI) to perturb and
even cancel out the emitted EM emanations resulting from finger-
pressing activities on the touchscreen. Recently, the EMI technique
has been widely studied to induce a fake human-touching event
(a.k.a., “ghost touch”) by intentionally modulating the frequency
and strength of the generated EM signals [28, 41, 56]. Hence, we can
leverage the modulated EM signals to add extra perturbations in
the EM emanations captured by the coil to prevent privacy leakage
and shield the security of users’ fingerprints. Since the attacker has
no prior knowledge of the extra EM interference signal patterns,
extracting the informative data incurred by finger-pressing from
the perturbed EM emanations is difficult.

Designing a second-factor user authentication. Our research
has shown that FPLogger can spoof in-display fingerprint sensors
on mainstream smartphones since their authentication systems
only authenticate the captured fingerprint images. To mitigate
such vulnerabilities, one can leverage other signals from other
built-in sensors (e.g., microphone, accelerometer) to design and
develop a second-factor user authentication system, i.e., acoustic
signals [8, 73], IMU signals [58, 71]. During the screen-unlocking
process, smartphones can not only capture fingerprint images via
the in-display sensor but also verify the patterns of the user’s hand
and finger movements through other sensors. As such, these second-
factor authentication methods are able to protect against spoofing
attacks using recovered 3D fingerprint pieces.

7.2 Attacks on Real Fingerprints

Our end-to-end attack evaluation in § 6 has demonstrated FPLog-
ger’s effectiveness in recovering 3D-printed low-resolution finger-
prints (i.e., 64𝑑𝑝𝑖) in the public dataset due to ethical concerns of
evaluating with real persons’ high-resolution fingerprints. It is also
interesting to explore and understand whether a recovered low-
resolution fingerprint from FPLogger can still spoof an in-display
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Fig. 21: Illustration of denoised and original fingerprints in eight end-to-end attack trials with high pHash similarity (marked
∗
). Four of them successfully spoof

the in-display fingerprint sensor, while the others are not. Yellow boxes: Similar/mispredicted patterns.

Fig. 22: pHash similarity of recovered and denoised fingerprints with different

numbers of participants in the training set (§ 7.3).

fingerprint sensor if the corresponding registered fingerprint is
as high-resolution as in daily normal scenarios, where a COTS
smartphone’s in-display fingerprint sensor often scans the user’s
fingerprint with resolution ranging from 300𝑑𝑝𝑖 to 550𝑑𝑝𝑖 [30].
As such, unlike 64𝑑𝑝𝑖 3D fingerprints used for both registration
and testing in § 6, the smartphone’s registered fingerprints in this
new evaluation have resolutions ranging from 300𝑑𝑝𝑖 to 550𝑑𝑝𝑖 ,
whereas the recovered ones for testing are 64𝑑𝑝𝑖 . In the end, we
conducted these new end-to-end experiments within the scope of
the approved IRB by registering the five smartphones used in § 6
with five real fingerprints from our own, collecting EM emanations
to recover fingerprint images, and reconstructing fingerprint pieces
to spoof the in-display fingerprint sensors.

As shown in Table 2, FPLogger can successfully recover and repro-
duce all fingerprints, and, surprisingly, it even unlocks two smartphone

models in three attack trials though it fails in the rest trials. These
results are reasonable and meet our expectations primarily due to
the pattern differences in detail between a high-resolution image
(≥ 300𝑑𝑝𝑖) and a low-resolution image (64𝑑𝑝𝑖), which results in a
failed similarity comparison. The evaluation results and hardware
specification also support our hypothesis because (𝑖) FPLogger
failed in all trials against Samsung Galaxy S10 as its sensor scans
fingerprints with the highest resolution, 550𝑑𝑝𝑖 [30], while (𝑖𝑖) ran-
domly succeeded in two of other four smartphones, i.e., OnePlus
10 Pro and Huawei P30 Pro, which scan relatively lower finger-
print’s resolution (300–363𝑑𝑝𝑖 [30]), offering a marginal chance
for FPLogger recovered 3D-printed low-resolution fingerprints to
spoof them. It should be noted that the ability of the current version
of FPLogger to generate high-resolution fingerprints is constrained
by the training dataset that only contains low-resolution fingerprint
images. We push the discussion of the related limitation to § 7.3.

7.3 Limitations and Future Works

We have implemented FPLogger to demonstrate the feasibility
of leveraging the EM emanations to recover fingerprints to spoof

Table 2: End-to-end attack results, including 25 trials of using recovered 3D

fingerprint pieces to unlock smartphones registered with five real fingerprints

(§ 7.2). FP: fingerprint, “#”: Fail, “ ”: Success.

Smartphone

Register

FP 𝑑𝑝𝑖

Test

FP 𝑑𝑝𝑖

T-3 Results of Five Real Fingerprints

FP 1 FP 2 FP 3 FP 4 FP 5

OnePlus 10 Pro 300–363 64 # #  # # # # #  # # # # # #
OPPO A96 300–363 64 # # # # # # # # # # # # # # #

Redmi K20 Pro 300–363 64 # # # # # # # # # # # # # # #
Huawei P30 Pro 300–363 64 # # # # # # # #  # # # # # #
Samsung S10 550 64 # # # # # # # # # # # # # # #

commodity in-display fingerprint sensors. While the results are
promising, there still exist several limitations in the current work.
First, as a proof of concept, FPLogger is developed and evaluated
in a public dataset that includes limited fingerprint images with
low resolutions. Fig. 22 shows the pHash similarities of the recov-
ered and denoised fingerprints increase when the size of the train-
ing set increases, which suggests that if there is a larger training
dataset with more high-resolution fingerprint images, FPLogger
can achieve better performance, especially when coming to recover-
ing real fingerprints from COTS smartphones. Second, we consider
a close attacking distance in FPLogger to capture fine-grained
EM emanations to demonstrate its feasibility. While this attacking
distance is on par with the research line of electromagnetic side
channels [3, 5, 9, 20, 38], it is possible to enhance FPLogger to work
on a setting with a longer distance, whereas EM emanations from
the in-display fingerprint sensor could be interfered with when
being blocked and attenuated by other electronic devices, resulting
in the loss of fingerprint information. We leave them to our future
studies and will seek further IRB approval.

8 RELATEDWORKS

Fingerprint spoofing attacks. Fingerprint recognition has be-
come a widely adopted authentication method for mobile devices
(e.g., smartphones, tablets), laptops, and IoT facilities (e.g., biomet-
ric door locks [16, 18]). Recent studies have revealed the vulnera-
bilities in fingerprint-based authentication systems. For instance,
various spoofing attacks [21, 34, 72] leverage smudges left on the
touchscreen to recover the fingerprint and then spoof the finger-
print recognition sensors of the users’ devices with artificial fin-
gerprint pieces made from materials like glue [11] and gelatin [53].
Moreover, other works [4, 14, 65, 69] have demonstrated that an
attacker can compromise the untrusted OS (e.g., Android 6.0/7.0)
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by installing malicious apps to bypass the smartphone’s finger-
print authentication system. However, smudge-based spoofing at-
tacks [11, 21, 34, 72] require prior knowledge of the users’ finger-
prints left on the touchscreen or leveraging a high-definition camera
to take fingerprint images. In addition, attacks [4, 14, 65, 69] need to
pre-install malware and can only be effective in old-version Android
OS. In this paper, we present FPLogger, the first attack framework
to spoof the most advanced in-display fingerprint sensors adopted
in newly-released smartphones via EM emanations.
Electromagnetic side channels. There are many efforts towards
exploiting electromagnetic side channels of the smartphone to un-
cover user privacy. For instance, an attacker can leverage the EM
emanations to infer cryptographic keys [19, 20], secret message
content [38, 70], unlocking passcodes [29], neural network archi-
tectures [3, 40], and hardware or software usage in other embedded
systems [5, 9]. Furthermore, Ni et al. [44, 46] utilizes the pertur-
bations of the EM emanations to uncover user privacy, i.e., app
usage and input keystrokes, when a wireless charger is charging
the smartphone. MagEar [36] demonstrated the feasibility of using
the coils in a headphone to eavesdrop on audio conversations in oth-
ers’ earphones or smartphone earpieces. Likewise, MagSnoop [10]
exploits the sound effect induced by the electromagnetic field to
infer the credit card tokens in the payment process of Samsung
Pay. Our work, FPLogger, leverages the electromagnetic emana-
tions in the unlocking process to recover the 3D fingerprints and
successfully spoofs state-of-the-art in-display fingerprint sensors.

9 CONCLUSION

In this paper, we present a novel side-channel attack for spoofing
the in-display fingerprint sensors of commodity smartphones by
leveraging the emitted EM emanations in a screen-unlocking pro-
cess. To validate its feasibility, we design and implement FPLogger,
an attack framework that utilizes the coil of a wireless charging
power bank to capture EM emanations from the smartphone when
the user presses the in-display fingerprint sensor, and then exploits
the extracted feature maps to recover fingerprint images and recon-
struct 3D fingerprint pieces to launch the spoofing attacks. To the
best of our knowledge, FPLogger is the first attack framework for
recovering fingerprints and spoofing the most advanced in-display
fingerprint sensors. Our extensive evaluation suggests that FPLog-
ger can recover fingerprints at a promising level that can be used
for building the 3D fingerprint pieces, and the results from end-
to-end attacks also present FPLogger achieves 24% (top-1), and
54% (top-3) success rates in spoofing the different smartphones’ in-
display fingerprint sensors. We hope our findings can raise public
awareness of the vulnerability of in-display fingerprint sensors and
spur research on detecting forthcoming side-channel attacks and
developing new defense approaches.
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