
RF-Egg: An RF Solution for Fine-Grained Multi-Target
and Multi-Task Egg Incubation Sensing

Zehua Sun, Tao Ni, Yongliang Chen, Di Duan, Kai Liu, Weitao Xu∗
{zehua.sun,taoni2-c,cs.ylchen,dduan5-c}@my.cityu.edu.hk,{kailiu,weitaoxu}@cityu.edu.hk

City University of Hong Kong, Hong Kong, China

ABSTRACT
Eggs and chickens serve as crucial animal-source proteins
in our diets, making large-scale breeding egg incubation an
essential undertaking. However, current solutions, i.e., vision-
based and sensor-based methods, are primarily designed for
egg fertility detection tasks under single-egg settings, which
have not yet satisfied the goal of multi-target and multi-task
sensing. In this paper, we propose RF-Egg, the first RF-based
fine-grained multi-target and multi-task egg incubation sens-
ing system with respect to sensing fertility, incubation status,
and early mortality of chicken embryos. RF-Egg leverages
the weak coupling effects of RFID tags when interacting with
eggs, which induces different impedance changes of RFID
tags with the incubation levels of eggs, thereby resulting in
a variation of low-level phase readings of the backscatter
signals. Regarding the challenge of multi-target profiling
interference, we propose a multipath combating algorithm
to extract the target-induced signal component based on
the built signal model, and address non-uniformity issues
across multiple tags. Moreover, we devise three unique fea-
ture maps tailored to each task, and then design an Multi-
Task Triplet (MTT) network for multitasking. Our evaluation
results based on 189 eggs show that RF-Egg achieves an ac-
curacy of 94.4%, 96.1%, and 90.1% for the aforementioned
three tasks when supporting 16 targets. Additionally, our
extensive field study in a local egg hatchery suggests that
RF-Egg presents the potential to be widely deployed in the
modern poultry industry.
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1 INTRODUCTION
Eggs and chickens are amongst the most important animal-
source proteins in our diets. Thus, large-scale breeding egg
incubation becomes an essential task to meet the demands of
the sustainability of modern poultry production and ensure
adequate supply to the consuming population. According to
USA Poultry Production and Value 2022 Summary [34], the
market value of broilers, turkeys, and eggs has exceeded 77.0
billion dollars in 2022. In the modern poultry industry, large-
scale breeding egg incubation requires precisely controlling
temperature and humidity levels during a 21-day incuba-
tion cycle. Despite the incubation environmental conditions
being closely monitored and controlled for incubators [43],
there is a lack of sensing systems for assessing the embryo’s
multiple developmental conditions of multiple breeding eggs
during the entire incubation cycle, with respect to fertility,
incubation status, and early mortality.

As shown in Table 1, previous works [14, 15, 25, 37] have
made efforts in egg incubation sensing, involving vision-
based and sensor-based methods. Specifically, traditional
vision-basedmethods utilize embryo candling [14, 39], hyper-
spectral imaging [28], and thermal imaging [25] to acquire
high-resolution image data for fertility detection. Among
these, embryo candling is the most common choice, where an
egg is candled by shining a light through it in darkness after
day 7 to observe the condition of the air cell, yolk, and white.
Conversely, sensor-based methods focus on the variations of
inherent properties of eggs during incubation with respect
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Fig. 1: Illustration of RF-Egg. In an incubator with mul-
tiple breeding eggs laid flat, an RFID tag array is at-
tached above (rather than sticking to) the eggs. Each tag,
corresponding to each egg, responds to the interroga-
tion signal from the RFID reader placed above. Accord-
ing to the readings of the RFID reader, egg incubation
sensing tasks can be achieved for multiple eggs with re-
spect to fertility, incubation status, and earlymortality.

to oxygen flux [37], acoustic resonance [6], dielectric prop-
erty [15], and spectral data [10] for fertility detection. For
example, the gas exchange rate of an egg is measured in the
closed and shielded environment to detect its fertility in [37].
However, existing works are primarily designed for single
fertility detection tasks under single-target settings, which
have not yet satisfied the goal of multi-target and multi-
task sensing. Moreover, the existing solutions fail to meet
the necessary requirements regarding non-intrusiveness, re-
sponsiveness, and usability.

To take the first step to fill this research gap, we propose
RF-Egg, an Radio Frequency (RF) solution for fine-grained
multi-target and multi-task egg incubation sensing. Specifi-
cally, RF-Egg exploits the weak coupling effects [16], which
results in different impedance changes when interacting with
the targets (i.e., eggs), rendering impedance-related phase
variations of Radio Frequency Identification (RFID) backscat-
ter signals that could reflect the egg incubation condition.
As shown in Fig. 1, in an incubator with multiple breeding
eggs laid flat, an RFID tag array is attached above (rather
than sticking to) the incubating eggs. Each tag, which corre-
sponds to each egg, responds to the interrogation signal from
the RFID reader placed at the top of the incubator. Subse-
quently, RF-Egg leverages the low-level phase features from
the captured RFID backscatter signals to achievemultiple egg
incubation sensing tasks, in terms of detecting egg fertility,
incubation status, and early mortality.
To design RF-Egg, we have overcome the following two

challenges:
Challenge 1: Multi-target profiling interference. To en-
able multi-target sensing capability, we propose extending
the single-tag sensing approach to the multi-tag one in the

spatial dimension. However, for each tag in the tag array, fil-
tering the target-induced signal component from irrelevant
ones in multipath environments poses a significant challenge.
Thus, we first build a signal model to explicitly understand
the various signal components. Following that, we propose
a circle-fitting algorithm to filter out the irrelevant compo-
nents by leveraging on a particular observation: the received
signals from the specific tag share the same Received Sig-
nal Strength (RSS) values (i.e., signal amplitude), but exhibit
phase variations within a 21-day incubation cycle. Moreover,
the initial phase and the amount of phase variation across
each tag introduce non-uniformity. Thus, we design a series
of approaches, such as phase calibration and masking, to
standardize the phase information across all tags.
Challenge 2: Multi-task sensing designing. Egg incuba-
tion sensing presents us with three distinct tasks with respect
to detecting egg fertility, incubation status, and early mortal-
ity. Designing a model capable of effectively handling these
three tasks presents a challenge. To achieve this, we first
devise three unique feature maps: Differencing Map (DM),
Global Map (GM), and Cumulative Difference Map (CDM),
tailored to each task by exploring the signal variations of
three types of eggs. Subsequently, we propose an Multi-Task
Triplet (MTT) network, where the multitasking module is
designed to leverage the inherent relationships among three
task feature maps, while the triplet-pickingmodule addresses
the issue of high sample similarity between two classes. MTT
is optimized through the use of weighted triplet loss and
cross-entropy loss function to indicate task weight, allowing
it to avoid task imbalance problems.
We implement RF-Egg using commodity RFID hardware

and evaluate its performance by conducting comprehensive
benchmark experiments with 189 eggs under various impact-
ing scenarios. The results show that RF-Egg can achieve an
accuracy of 94.4%, 96.1%, and 90.1% for the three tasks when
supporting an incubator that can host 16 targets simultane-
ously. Additionally, our field study in a local egg hatchery
attains an average performance of 86.4% for the three tasks.

In summary, RF-Egg makes the following contributions:

• To the best of our knowledge, RF-Egg represents the first
RF-based fine-grained multi-target and multi-task egg in-
cubation sensing system, possessing the characteristics of
non-intrusiveness, high-responsiveness, andwell-usability.
We first demonstrate the feasibility of exploiting low-level
phase readings of the RFID backscatter signal in egg incu-
bation sensing, and then advance the sensing capability of
RF-Egg to the level of multi-target and multi-task sensing.

• Regardingmulti-target profiling interference, we propose a
novel multipath combating algorithm to extract the target-
induced signal component based on the built signal model
and design a series of approaches to address non-uniformity
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Table 1: Comparison with related egg incubation sens-
ing works in five metrics. M1: multi-target, M2: multi-
task, M3: non-intrusiveness, M4: responsiveness, M5:
usability (●–True, ❍–False).

Related Works Type Feature M1 M2 M3 M4 M5

Liu et al. [28] Vision Hyper-spectral image ● ❍ ● ● ❍
Lin et al. [25] Vision Thermal image ● ❍ ● ● ❍
DPSA [14] Vision Embryo image ❍ ❍ ● ● ●
Saifullah et al. [39] Vision Embryo image ❍ ❍ ● ● ●

Coucke et al. [6] Sensor Acoustic resonance ❍ ❍ ❍ ● ❍
NMT-ETS [37] Sensor Oxygen flux ❍ ❍ ● ❍ ❍
Ghaderi et al. [15] Sensor Dielectric property ❍ ❍ ❍ ❍ ❍
Dong et al. [10] Sensor Spectral data ❍ ❍ ● ❍ ❍

RF-Egg (ours) RF RFID phase ● ● ● ● ●

issues across multiple tags. Regarding three distinct tasks
in egg incubation sensing, we design an MTT network to
consider task-specific input and task imbalance problems.

• We implement and evaluate RF-Egg using commodity RFID
hardware. The results show that RF-Egg can achieve an ac-
curacy of 94.4%, 96.1%, and 90.1% for the three tasks when
sensing 16 targets. Furthermore, our field study suggests
that RF-Egg presents the potential to be widely deployed
in the modern poultry industry.
The rest of this paper is organized as follows: §2 introduces

preliminaries. §3 provides sensing models. §4 illustrates sys-
tem designs of RF-Egg, encompassing two components in
§5 and §6. §7 presents evaluation results. §8 discusses lim-
itations and future works. §9 summarizes the related works.
§10 concludes this paper.

2 PRELIMINARIES
In this section, we give a brief preliminary of egg incubation
and RFID system.

2.1 Egg Incubation
Egg structure. Eggs, produced by a chicken, are the contents
of hard-shelled reproductive bodies, serving a primary role
in both species reproduction and food sources. Typically,
an egg weighs 40 g to 60 g, comprising various components
including up to 11% lipids, 12% protein, and 74% water [17].
As illustrated in Fig. 2, the primary structural components
of an egg include the shell to provide protection for the egg,
the albumen to supply water, the yolk to deliver essential
nutrients for embryo development, the chalaza to anchor
the yolk to the egg’s center, and the germinal disc as the
embryo-forming part on the egg yolk.
Egg incubation process. Before incubation, breeding eggs
are meticulously collected and stored in a cool and dry envi-
ronment for seven days to promote natural development and
maturation. During the first 18 days of incubation, the eggs

are placed lying horizontally, turned intermittently within
the incubator set in a constant temperature 37.8 ◦C and rela-
tive humidity of 60%. During the last three days, egg turning
ceases, and the eggs are positioned with their larger ends fac-
ing upward while maintaining temperature and increasing
relative humidity, awaiting the chicks to hatch.
As illustrated in Fig. 3, the egg incubation process typ-

ically spans 21 days [42]. During the initial three days of
incubation, the embryo’s tissues, blood vessels, and heart
begin to develop, giving rise to the initial characteristics of
the embryo. On days 4–9, the embryo has eye pigmented,
and grows various organs with respect to elbows, knees,
beak, and feather bundles sequentially, rendering bird-like
appearances. On days 10–12, the organs continue to grow,
resulting in protruding teeth, evident tail feathers, and the
formation of toes. On days 13–18, the embryo moves towards
the larger end of the egg, feathers emerge then fully cover
the entire body, and egg albumen almost vanishes, indicating
complete development. During the last three days of incu-
bation, the yolk sac is completely drawn in, and the embryo
occupies the entire egg, which is now ready to break out
of its shell. Throughout this process, the egg undergoes a
significant qualitative biological change. Intriguingly, these
internal changes have a significant impact on the egg’s di-
electric permittivity [2, 4], a factor crucial to RF-Egg (§2.2).

2.2 RFID
RFID system. A typical RFID system, as illustrated in Fig. 4,
comprises readers with antennas (or interrogators) and pas-
sive electronic tags (or transponders). The communication
and energy supply between the reader and the tag are accom-
plished by electromagnetic backscatter coupling [8]. Specifi-
cally, the passive tag captures the query RF signal emitted
by the reader whilst harvesting energy to power itself, and
then modulates the response backscatter signal by changing
its antennas’ impedance.
Weak coupling effect between the tag and the target.
When the RFID tag is positioned in close proximity to the tar-
get, evenwithout direct contact, the tag antenna’s interaction
with the target in its immediate vicinity is governed by a con-
cept called a near-field inductive coupling effect [16]. The rea-
son is that the electromagnetic field of the RFID tag antenna
is occupied by the region of space at which the target is lo-
cated. Specifically, the extent of the coupling effect is largely
determined by an intrinsic property of the target known as
dielectric permittivity [2, 4], represented as 𝜖𝑟 . The dielectric
permittivity describes the medium’s capacity to store electric
field energy relative to a vacuum. As the dielectric permittiv-
ity of incubating eggs will change with their incubation level,
thus affecting the electric field distribution around the egg.
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Fig. 2: The structure of an egg. Fig. 3: Egg incubation process.

Fig. 4: RFID system.

This variation induces a change in the impedance-related
phase, which can be leveraged for egg incubation sensing.

2.3 Feasibility Study
Enabling RFID sensing capability in egg incubation is desir-
able, prompting us to conduct a feasibility study to verify
our concept. In our experiment, we attach a passive RFID
tag near (rather than sticking to) the breeding eggs to in-
teract with the reader, which records the low-level channel
features of the RF signal during a 21-day incubation cycle.
Three types of eggs are accounted for: non-fertilized, early-
mortal, and normal breeding eggs, and examine their signal
variations within a 21-day period. Using collected signals,
we explore the possibility of (1) detecting egg fertility, (2)
monitoring egg incubation status, and (3) identifying em-
bryo early mortality. Fig. 5 demonstrates the RF signal phase
readings during a 21-day incubation period.
Task 1: Detecting egg fertility. As shown in Fig. 5, the
difference in signal phase values between non-fertilized and
normal breeding eggs is noticeable. The phase curve of the
non-fertilized eggs shows stable values over time, while that
of the normal breeding ones shows a trend of variation as
the incubation level changes, rendering a not overlapping of
incubation and non-fertilized zones. As a result, this differ-
ence indicates that non-fertilized and normal breeding eggs
produce distinct features on and after day 4.
Task 2: Monitoring egg incubation status.Our focus then
moves to the signal phase variation of normal breeding eggs
during a 21-day period. It is observed the different incubation
levels result in different variations in signal phase readings.
Intuitively, phase values have an increasing trend during the
entire period, which can be leveraged to accurately monitor
the specific egg incubation status. The increasing phase trend
is mainly attributed to the reduction of egg’s permittivity,

i.e., the alterations in less water (high permittivity) and more
embryos (low one).
Task 3: Identifying embryo early mortality. Lastly, we
focus on the difference between early-mortal and normal
breeding eggs. We can observe that the phase curves of both
types of eggs diverge from a certain point (i.e., day 10) and
subsequently show different patterns over time. This point
represents the date of death of the egg embryo, while the
early-mortal zone presents its different development com-
pared with a normal breeding egg. This difference indicates
that embryo early mortality can be identified.
Key insights. Our key insights are summarized as follows.
The qualitative changes occurring inside eggs at various
incubation levels cause unique RF signal phase variation.
This validates the feasibility of exploiting fine-grained phase
features of the RF signal to detect egg fertility, monitor egg in-
cubation status, and identify embryo early mortality. The un-
derlying rationale is weak coupling effects result in different
impedance-related phase variations of RFID backscatter sig-
nals when interacting with eggs. As such with these insights,
our goal is to advance the sensing capability from single-
target to multi-target, and from single-task to multi-task.

3 UNDERSTANDING MULTI-TARGET
SENSING

To enable multi-target sensing capability, we propose extend-
ing the single-tag sensing approach to the multi-tag one in
the spatial dimension. By assigning each tag to a distinct
target to capture their respective RF signal variations, we can
achieve multi-egg incubation sensing. Specifically, we lay
out a tag array Γ with the size of ℎ×𝑤 (ℎ,𝑤 > 0). Each tag el-
ement in Γ can be denoted as 𝛾 (𝑖, 𝑗), where 𝑖 = 1, 2, . . . ℎ; 𝑗 =
1, 2, . . .𝑤 , representing its location in the tag array and the
corresponding situated breeding egg.
Transmission model. In an RFID system built with passive
tags, when the reader interrogates the tags, the query sig-
nal transmitted by the reader can be represented as 𝑆𝑇𝑥 =

|𝑆𝑇𝑥 | 𝑒 𝑗𝜃𝑇𝑥 , where |𝑆𝑇𝑥 | and 𝜃𝑇𝑥 represent the signal’s ampli-
tude and phase, respectively. Then, the received signal at the
tag 𝛾 (𝑖, 𝑗) side can be represented as

𝑆𝑇𝑎𝑔 (𝑖, 𝑗 ) = 𝑆𝑇𝑥 · ℎ𝐴𝑖𝑟 (𝑖, 𝑗 ) · ℎ𝑇𝑎𝑔, (1)

531



RF-Egg ACM MobiCom ’24, September 30–October 4, 2024, Washington D.C., DC, USA

Fig. 5: Illustration of RF signal phase variations of non-fertilized, early-mortal (from day 10), and normal breeding
eggs during a 21-day incubation period (top), along with the candling figures of normal breeding eggs (bottom).

where ℎ𝐴𝑖𝑟 = |ℎ𝐴𝑖𝑟 | · 𝑒 𝑗𝜃𝐴𝑖𝑟 and ℎ𝑇𝑎𝑔 =
��ℎ𝑇𝑎𝑔�� · 𝑒 𝑗𝜃𝑇𝑎𝑔 rep-

resent the channel parameters over the air and the tag’s
antenna [46], respectively.

When the RFID tag receives the query signal, it modulates
the reflection backscatter signal controlled by its tag chip.
The reflection coefficient 𭟋 = |𭟋| · 𝑒 𝑗𝜃𭟋 , is a measure of the
impedance mismatch between the tag’s antenna and the
RFID chip [36]. Thus, the received signal at the reader side
from the tag 𝛾 (𝑖, 𝑗) can be represented as

𝑆𝑅𝑥 (𝑖, 𝑗 ) = 𝑆𝑇𝑎𝑔 (𝑖, 𝑗 ) · 𭟋(𝑖, 𝑗 ) · ℎ𝐴𝑖𝑟 (𝑖, 𝑗 ) · ℎ𝑅𝑑𝑟

=
��𭟋(𝑖, 𝑗 )𝑆𝑇𝑥ℎ𝐴𝑖𝑟 (𝑖, 𝑗 )2ℎ𝑇𝑎𝑔ℎ𝑅𝑑𝑟

��𝑒 𝑗 (𝜃𭟋 (𝑖,𝑗 )+𝜃𝑇𝑥 +2𝜃𝐴𝑖𝑟 (𝑖,𝑗 )+𝜃𝑇𝑎𝑔+𝜃𝑅𝑑𝑟
)
,

(2)

where ℎ𝑅𝑑𝑟 = |ℎ𝑅𝑑𝑟 | · 𝑒 𝑗𝜃𝑅𝑑𝑟 represents the channel parame-
ters over reader’s antenna.
Throughout our experiments, we have maintained the

experiment settings while the incubation level of the eggs
varied. Thus, 𝑆𝑇𝑥 1, ℎ𝑇𝑎𝑔2, and ℎ𝑅𝑑𝑟 are regarded as constants.
The factors subject to variation are 𭟋(𝑖, 𝑗) due to the tag
impedance change, and ℎ𝐴𝑖𝑟 (𝑖, 𝑗) due to the multipath signal
propagation change.
Tag impedance. As stated in §2.2, the presence of the target
alters the tag’s antenna impedance due to the weak coupling
effect, and subsequently the reflection coefficient 𭟋. Specifi-
cally, as illustrated in Fig. 4, a passive RFID tag comprises an
antenna and an Integrated Circuit (IC), with their impedance
denoted as 𝑍𝑐 and 𝑍𝑎 , respectively. Notably, the IC chip has
two impedance states, i.e., 𝑍𝑐 (𝑂𝑛) and 𝑍𝑐 (𝑂𝑓𝑓 ). Thus, 𭟋 can

1RFID readers typically transmit signals with a fixed phase to ensure highly
accurate signals to be received by tags [8].
2ℎ𝑇𝑎𝑔 mainly represents the channel parameters of the tag’s antenna with
respect to gain, polarization, and radiation efficiency.

be then represented as [33, 36]:

|𭟋 | =
����𝑍𝑐 − 𝑍 ∗

𝑎

𝑍𝑐 + 𝑍𝑎

���� , 𝜃𭟋 = arg
(

1
𝑍𝑎 + 𝑍𝑐 (𝑂𝑓𝑓 ) − 1

𝑍𝑎 + 𝑍𝑐 (𝑂𝑛)

)
. (3)

It follows then, that the reflection coefficient 𭟋(𝑖, 𝑗) is influ-
enced by the incubation level of the corresponding breeding
egg situated at tag 𝛾 (𝑖, 𝑗), thereby rendering an RF signal
variation.
Multipath signal propagation. The received signal is typi-
cally the superposition of signals frommultiple Line-Of-Sight
(LOS) direct and Non-LOS (NLOS) indirect paths, referred
to as multipath. As illustrated in Fig. 7, the received sig-
nal can be decomposed into three components: direct LOS
component ℎ𝐿𝑜𝑠 , the target-induced component ℎ𝑇𝑎𝑟 , and
surrounding environment components ℎ𝐸𝑛𝑣 such as nearby
eggs, incubator shells, and the tag pad. Given the interfering
componentsℎ𝐿𝑜𝑠+ℎ𝐸𝑛𝑣 may cause unpredictably signal varia-
tions, our goal is to focus only on target-induced components
ℎ𝑇𝑎𝑟 . Thus, the multipath effect can be represented by

ℎ𝐴𝑖𝑟 = ℎ𝐿𝑜𝑠 + ℎ𝑇𝑎𝑟 + ℎ𝐸𝑛𝑣

= |ℎ𝑇𝑎𝑟 | 𝑒 𝑗𝜃𝑇𝑎𝑟 +
𝑛∑︁
𝑖

|ℎ𝑖 | 𝑒 𝑗𝜃𝑖 ,
(4)

where 𝑛 is the total number of signal propagation paths other
than target-induced one, and ℎ𝑖 is the channel coefficient of
path 𝑖 .
The theoretical principle of ℎ𝑇𝑎𝑟 is described as follows.

When an RF signal encounters a boundary between the air
and the solid surface of an egg, a portion of the wave is trans-
mitted into the egg, while another portion of the wave is
reflected back into the air (and received by the tag). The re-
flection coefficient𝑅 describes the ratio of the reflectedwaves
to the incident ones, which can be expressed as 𝑅 =

𝑍2−𝑍1
𝑍2+𝑍1

,
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Fig. 6: System overview of RF-Egg. Specifically, RF-Egg works in two stages: multi-target profiling and multi-task
sensing stages.

where 𝑍1 and 𝑍2 are the impedance of the air and egg, re-
spectively. The impedance 𝑍 is related to the refractive index
𝑟 through 𝑍 =

√︁
𝜇0/𝜖0 · 𝑟 , where 𝜇0 and 𝜖0 are the perme-

ability and permittivity of free space, respectively. The re-
fractive index 𝑟 is an intrinsic characteristic of the medium
related to its complex permittivity 𝜖𝑟 , which can be written as
𝜖𝑟 = 𝜖′𝑟+𝑖𝜖′′𝑟 [49], where 𝜖′𝑟 and 𝜖′′𝑟 represent the real and imag-
inary parts. The refractive index 𝑟 can then be expressed as

𝑟 =

√︄
1
2

(√︃
(𝜖′𝑟 )2 + (𝜖′′𝑟 )2 + 𝜖′𝑟

)
. (5)

As stated previously, the dielectric permittivity 𝜖𝑟 of breed-
ing eggs varies with their incubation level, which affects
the refractive index 𝑟 , and subsequently the reflection coeffi-
cient 𝑅. Consequently, the target-induced component ℎ𝑇𝑎𝑟 is
slightly influenced by the level of egg incubation, rendering
an RF signal variation.

However, irrelevant components ℎ𝐿𝑜𝑠 + ℎ𝐸𝑛𝑣 are not mod-
eled to quantify their adverse effects on themeasured sensing
results. Thus, isolating the target-induced signal component
from irrelevant ones poses a primary challenge, the detailed
solution is presented in §5.1.

4 RF-EGG DESIGN
Fig. 6 illustrates the system overview of RF-Egg. RF-Egg
works in two stages: multi-target profiling and multi-task
sensing stages.
Multi-target profiling. Upon receiving the RSS and phase
readings captured by the RFID tag array when interacting
with the eggs, they are pre-processed to form complex sig-
nals. Following this, we propose a circle fitting algorithm to
filter out the irrelevant signal components, as detailed in §3.
Subsequently, we devise a series of countermeasures, such as
spline interpolation, phase calibration, and masking, to stan-
dardize the phase information across all tags in the tag array.
Multi-task sensing. In this stage, the signals, after being
processed by the multi-target profiling stage, are further
leveraged to generate DM, GM, and CDM for each of the
three tasks, respectively. Subsequently, these feature maps

are fed into the proposed MTT network, where the multi-
tasking module is engineered to leverage the inherent rela-
tionships among three task feature maps, while the triplet
picking module addresses the issue of high sample similarity
between two classes. Finally, RF-Egg can achieve fertility,
incubation status, and early mortality sensing for multiple
breeding eggs.

5 MULTI-TARGET PROFILING
In this section, we discuss the process of multi-target pro-
filing, including multipath combating (§5.1) and multi-tag
standardizing (§5.2).

5.1 Multipath Combating
5.1.1 Pre-Processing. We start by pre-processing the received
RSS and phase readings for the proposed multipath combat-
ing methods. As stated previously in §3, we possess a tag
array Γ containing multiple tags 𝛾 (𝑖, 𝑗), sized ℎ ×𝑤 . The tag
array captures a data segment D = {R,P} over 𝑐 hopping
frequencies (the channel index is represented by 𝑘), where
RSS and phase data stream are denoted as R = {R(𝑖, 𝑗, 𝑘)}
and P = {P(𝑖, 𝑗, 𝑘)}, respectively. Subsequently, we lever-
age the data segment D to construct the received complex
signals 𝑆𝑅𝑥 (𝑖, 𝑗, 𝑘) for the tag 𝛾 (𝑖, 𝑗) over the 𝑘−𝑡ℎ hopping
frequency. However, the received signals are prone to distor-
tion caused by environment noises. Moreover, the movement
of embryos in the breeding eggs can also cause signal fluctu-
ations. As such, we use the Savitzky-Golay (S-G) filter [30] to
diminish ambient noise and limit signal fluctuations, while
not introducing additional phase distortion problems.

5.1.2 Circle Fitting Algorithm. To better explain the multi-
path effect in RFID system, we utilize the example shown
in Fig. 8 to illustrate the phase variation of RF signals over
16 hopping frequencies (from 920.625MHz to 924.375MHz)
when direct-path and multipath signals dominate, respec-
tively. It is observed that the direct-path signal results in an
approximate linearly-changing phase across the frequency
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Fig. 7: Multipath signal
propagation.

Fig. 9: Circle-fitting algo-
rithm.

bands, while severe multipath signals may cause unpre-
dictable signal variation to adversely affect phase measure-
ments. Consequently, eliminating the influence induced by
irrelevant multipath signals has a significant impact on the
sensing accuracy.
To achieve this, an intuitive method [50] is leveraging

the linear phase-frequency relationship to select specific
channels with little multipath. However, this approach still
includes irrelevant components and cannot specify the same
channel indices when sensing multiple targets. To this end,
we propose a novel multipath combating algorithm as a
reliable solution.
Key observations. Revisiting in §3, the received complex
signal comprises both the target-induced component ℎ𝑇𝑎𝑟
and irrelevant componentsℎ𝐿𝑜𝑠+ℎ𝐸𝑛𝑣 . Thus, the received sig-
nal is the superposition of these two components, which can
be depicted in the Inphase-Quadrature (I-Q) plane, as illus-
trated in Fig. 9. To filter out the irrelevant componentsℎ𝐿𝑜𝑠 +
ℎ𝐸𝑛𝑣 , we adopt the circle fitting algorithm [12] to separate
these two components. Our algorithm is based on two key ob-
servations. (1) As we kept the experiment settings invariant
with no significant displacement among the reader, tags, and
targets, thus the irrelevant components ℎ𝐿𝑜𝑠 (𝑖, 𝑗) +ℎ𝐸𝑛𝑣 (𝑖, 𝑗)
for each tag 𝛾 (𝑖, 𝑗) in Γ can be roughly considered constant.
While the incubation level of the breeding eggs within a
21-day incubation cycle varies, the target-induced compo-
nent ℎ𝑇𝑎𝑟 (𝑖, 𝑗) resulted from the corresponding breeding egg
varies. (2) The received signals from the same breeding egg
share the same RSS values (i.e., signal amplitude)3, but exhibit
phase variations within a 21-day incubation cycle. Therefore,
the received signals 𝑆𝑅𝑥 (𝑖, 𝑗, 𝑘) are distributed over part of
the arc on a circle, since they have the same circle center
(due to constant irrelevant componentsℎ𝐿𝑜𝑠 +ℎ𝐸𝑛𝑣), the same
radius but varying phase values (due to invariant amplitudes
but variant phases of the target-induced component ℎ𝑇𝑎𝑟 ).
Thus, we identify the center of the circle corresponding to

3According to signal model in §3, although signal amplitude may vary, its
variation is far from significant compared to the fine-grained phase.
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(a) Direct-path signals dominate.
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(b) Multipath signals dominate.

Fig. 8: RFID signal phase variation over 16 hopping
frequencies.

irrelevant components ℎ𝐿𝑜𝑠 (𝑖, 𝑗) + ℎ𝐸𝑛𝑣 (𝑖, 𝑗), which is then
utilized as the new coordinate origin to extract the target-
induced component ℎ𝑇𝑎𝑟 (𝑖, 𝑗) for each tag 𝛾 (𝑖, 𝑗) in Γ.
Circle fitting algorithm. Fig. 9 illustrates the process of the
least squares circle fitting algorithm. For the tag 𝛾 (𝑖, 𝑗), we
collect the signals 𝑆𝑅𝑥 (𝑖, 𝑗, 𝑘) over a 21-day incubation cycle.
This allows us to generate a set of points [𝑋,𝑌 ] in the I-Q
plane, where 𝑋 = [𝑥1, 𝑥2, . . . , 𝑥𝑛]T and 𝑌 = [𝑦1, 𝑦2, . . . , 𝑦𝑛]T
represent the real and imaginary parts of a total of𝑛 sampling
points from the signals. Thus, the equation of the fitting circle
can be represented by

𝑋 2 +𝑌 2 − 2𝐼𝑋 − 2𝑄𝑌 + (𝐼 2 +𝑄2 − 𝑅2 ) = 0, (6)

where 𝐼 and 𝑄 represents the coordinates of circle’s center
while 𝑅 is its radius. The equation can be rewritten as:

𝑥2
1 + 𝑦21

𝑥2
2 + 𝑦22
.
.
.

𝑥2
𝑛 + 𝑦2𝑛


+


𝑥1 𝑦1 1
𝑥2 𝑦2 1
.
.
.

.

.

.
.
.
.

𝑥𝑛 𝑦𝑛 1


×


−2𝐼
−2𝑄

𝐼 2 +𝑄2 − 𝑅2

 = 0. (7)

By solving these equations via Newton’s method [3], we can
obtain the fitted circle. Specifically, we subtract the circle cen-
ter [𝐼 ,𝑄] from the original points [𝑋,𝑌 ] to obtain the new
points, i.e., [𝑋 ′, 𝑌 ′] = [𝑋,𝑌 ] − [𝐼 ,𝑄], which represents the
target-induced components of the received signals, denoted
as 𝑆 ′

𝑅𝑥
(𝑖, 𝑗, 𝑘).

5.2 Multi-Tag Standardizing
Given our use of a multi-tag array for sensing, we encounter
three problems in non-uniformity across tags: the response
sequences, the initial phase after multipath combating, and
the amount of phase variation.
Spline interpolation. The response sequences of RFID tags
exhibit non-uniformity in the time domain [52], due to differ-
ent signal paths and intra-signal interference. To address this
issue, we perform spline interpolation [49] to re-sample the
signal 𝑆 ′

𝑅𝑥
(𝑖, 𝑗, 𝑘). This involves approximating the values be-

tween the original data points by a series of spline functions
to obtain continuous smooth signals. By doing so, we obtain
the re-sampled one possessing the same length 𝐿 for each tag.
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(a) Day 1.
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(b) Day 21.

Fig. 10: Illustration of GM of the tag array Γ with the
size of ℎ ×𝑤 over 𝑐 hopping frequencies on day 1 and
day 21, respectively (ℎ = 𝑤 = 4 and 𝑐 = 3).

Phase calibration.After combating themultipath effect, the
sampling points of the re-sampled signal 𝑆 ′

𝑅𝑥
(𝑖, 𝑗, 𝑘) of the tag

𝛾 (𝑖, 𝑗) are distributed within approximately the same range
on the circle in the I-Q plane. However, those of different
tags are distributed within different ranges on the circle due
to different signal paths, rendering different phase offsets.
To rectify this, we perform phase calibration by rotating the
phases of the signals of different tags from the same starting
position (i.e., from around 0) to enable accurate and reliable
multi-target sensing.
Masking. In our tag array Γ, the amount of phase variation
caused by the breeding eggs situated at different tag locations
is not uniformly the same over a 21-day incubation cycle
(see Fig. 10). Therefore, we aim to incorporate location infor-
mation to counteract this effect. Specifically, we first reshape
the 1D phase sequence of the calibrated signal 𝑆 ′

𝑅𝑥
(𝑖, 𝑗, 𝑘)

into a 2D matrix, consequently producing the block B(𝑖, 𝑗, 𝑘)
of size

√
𝐿×

√
𝐿×𝑘 . Thus, we can collect phase blocks B (i.e.,

GM in §6.1) of the tag array Γ with the size of ℎ ×𝑤 over 𝑐
hopping frequencies, as shown in Fig. 10.
Therefore, we employ the mask mechanism [53] to em-

phasize the phase blocks B(𝑖, 𝑗) of the targeted tag location
𝛾 (𝑖, 𝑗) while those of other blocks are set to aweight of 0. This
mask mechanism allows preserving the tag location informa-
tion whilst serving the task-specific feature representation.

6 MULTI-TASK SENSING
In this section, we discuss the process of multi-task sens-
ing, including task-specific feature representation (§6.1), and
triplet multitasking (§6.2).

6.1 Task-Specific Feature Representation
DM for Task 1. Revisiting 𝑆2.3, the signal phase of non-
fertilized and normal breeding eggs shows a noticeable differ-
ence. The approach hence involves creating a DM, achieved
by subtracting the phase block B(𝑖, 𝑗) of a reference non-
fertilized egg from that of the candidate egg.

GM for Task 2. As determined by our feasibility study, the
phase values of normal breeding eggs exhibit an increasing
trend with the incubation level. However, this variation is
fine-grained and susceptible to various noise or improper
measurement operations. In practice, the incubation status of
the eggs in the same batch is typically consistent. To improve
the robustness of RF-Egg, we devise a GM that takes into ac-
count all blocks B as shown in Fig. 10. Even if non-fertilized
and early-mortal eggs may be present, their proportion is
relatively small.
CDM for Task 3. Identifying embryo’s early mortality poses
a significant challenge, as often a single signal collection fails
to provide sufficient information. For example, as depicted in
Fig. 5, ideally, one single signal collection would regard the
day of early mortality as its current incubation status, rather
than acquiring its embryo development condition. Therefore,
we design a 𝑑 Cumulative Difference Map (𝑑-CDM) that
aggregates the DM of the candidate egg with those from its
previous 𝑑 days to identify embryo early mortality.

6.2 Triplet Multitasking
Once generating the task-specific feature maps, we need to
design a network tailored to our incubation sensing tasks.
However, this presents two significant challenges:
(1) When considering three distinct tasks, a straightfor-

ward approach is to treat them as separate tasks to be solved
independently, which disregards the valuable correlation in-
formation existing between the tasks [44]. In this respect,
multi-task learning [24] emerges as a potential solution,
which aims to enhance task performance and model gener-
alization by jointly training multiple related tasks to thereby
exploit their intrinsic relationships and specific informa-
tion [44]. In our approach, we design a multi-task neural
network with hard constraints [57], which allows all tasks
to learn task-shared features by sharing some identical bot-
tom layers while each task to learn task-specific features by
applying unique layers to each sub-network for a specific
task.
(2) When performing Task 2, it is common to encounter

highly similar samples between two classes, such as samples
from adjacent incubation days, which can blur the boundary
between two classes. To address this issue, we utilize a triplet
network [40] to alleviate such a problem. A triplet network,
a type of neural network used in metric learning, is designed
to learn a similarity function that maps inputs into a metric
space, where the distance between inputs reflects their simi-
larity. By leveraging a triplet network, we can enhance the
accuracy of classification tasks, even those with numerous
sample classes and limited data. Overall, we propose an MTT
network for our incubation sensing tasks below.
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Fig. 11: Multi-Task Triplet (MTT) network.

Network architecture. Fig. 11 illustrates the architecture
of the proposed MTT network. The MTT network is com-
posed of three parallel and identical sub-networks that serve
as feature extractors, sharing the same weights and hyper-
parameters. Thus, it processes three distinct inputs, namely
the anchor (A), positive (P), and negative (N) inputs, each of
which is independently fed into its respective sub-networks.
Each sub-network takes the ResNet18 network [19] as the
backbone. Specifically, each ResNet18 backbone maintains
its pre-existing architecture until the fully connected lay-
ers. Specifically, they each possess three parallel fully con-
nected layers as the embedding layers, followed by three
parallel softmax layers corresponding to the class number
of each task (i.e., 2, 21, and 2). Among these components,
the ResNet18 pre-existing architecture, until the fully con-
nected layers, is responsible for learning shared correlation
features, the embedding layers are designed to extract task-
specific features across tasks, while the softmax layers are
for classification.
Triplet picking. Specifically, the triplet inputs are defined
as follows:
• Anchor. The anchor input serves as the main reference
point.

• Positive. The positive input is randomly selected from the
remaining samples of the anchor’s class.

• Negative. The negative input is sampled from any other
class from the anchor in the same task. We focus on sam-
ples from two adjacent incubation days.

Training strategy. The training objective for each task is
two-fold: (1) to minimize the distance between the anchor
𝐴 and the positive 𝑃 and to maximize the distance between
𝐴 and the negative 𝑁 ; and (2) to minimize the discrepancy
between predicted output and actual label. The triplet loss
function L𝑡𝑟𝑖 (𝐴, 𝑃, 𝑁 ) can be formulated as:

L𝑡𝑟𝑖 (𝐴, 𝑃, 𝑁 ) = max ( ∥f (𝐴) − f (𝑃 ) ∥2 − ∥f (𝐴) − f (𝑁 ) ∥2 + 𝜖, 0) , (8)

where 𝜖 represents the margin between the positive 𝑃 and
negative 𝑁 pairs, and f is the embedding feature vector.
While, the cross-entropy loss function L𝑐𝑒 (𝐴𝑡 ) for task 𝑡

can be expressed as:

L𝑐𝑒 (𝐴𝑡 ) = −
𝐶∑︁
𝑖=1

𝐴𝑡𝑖 log(s(𝐴𝑡𝑖 ) ), (9)

where 𝐶 is the number of classes, 𝐴𝑡𝑖 represents whether
the sample belongs to class 𝑖 (i.e., 0 or 1), and s(𝐴𝑡𝑖 ) is the
predicted output from the softmax layer. The loss value for
each task is calculated independently, utilizing its own class
score. These separate loss values from all tasks are then added
together to determine the total loss of the MTT network
during the training process, which is instrumental in learning
the network parameters. This can be expressed as:

L(𝐴, 𝑃, 𝑁 ) =
3∑︁

𝑡=1
𝜆𝑡 (L𝑡𝑟𝑖 (𝐴𝑡 , 𝑃𝑡 , 𝑁𝑡 ) + L𝑐𝑒 (𝐴𝑡 ) ), (10)

where 𝑡 is the index of task, 𝜆𝑡 represents the weight of the
corresponding task. For our purposes, Task 2 is identified as
the primary task.

7 EVALUATION
In this section, we evaluate the performance of RF-Egg, in-
cluding experimental methodology (§7.1), overall perfor-
mance (§7.2), micro-benchmarking (§7.3), and field study
(§7.4).

7.1 Experimental Methodology
Hardware platform. As shown in Fig. 12 (a), we implement
RF-Egg using a Commercial Off-The-Shelf (COTS) Impinj
Speedway R420 RFID reader equipped with a single direc-
tional circularly-polarized antenna (with the gain of 9 dBi
and beamwidths of 70◦ in elevation and azimuth directions),
multiple Alien AZ-9629 RFID tags (measuring 22.5mm ×
22.5mm in size). The RFID reader interfaces with a com-
puter equippedwith Intel Core i7-10700 2.90GHzCPU, 64GB
RAM, and NVIDIAGeForce RTX 3080 GPU, acting as a server
via an Ethernet cable.
Backend implementation. The server establishes the con-
nection with the RFID reader under Low-Level Reader Proto-
col (LLRP) for data collection, where the software facilitating
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Fig. 12: Experimental setup, including RFID hardware, incubator (exterior and interior), and RF-Egg (Stationary
and Portable settings).

this communication is developed using C#. Additionally, the
multi-target profiling and multi-task sensing algorithms are
implemented in Matlab and Python.
Experimental setting. As shown in Fig. 12 (b) and (c), we
evaluate RF-Egg in the context of an incubator containing
multiple breeding eggs4. RF-Egg is designed with two distinct
configurations: a Stationary one (RF-Egg-S) and a Portable
one (RF-Egg-P), which are shown in Fig. 12 (d) and (e), re-
spectively. The Stationary setting is tailored for use within
incubator environments, while the Portable setting is more
suited to field-study environments. In the Stationary setting,
where the eggs are laid flat in the incubator, a tag array pad
is attached above the eggs. Each tag, which corresponds to
each egg, responds to the interrogation signal from the RFID
reader suspended above. Conversely, in the Portable setting,
the eggs are positioned horizontally in a tag array mold.
Each tag is located underneath the grooves of the eggs and
responds to the interrogation signal from the RFID reader
situated underneath.
By default, the server continuously receives the RSS and

phase readings from multiple tags across 16 hopping fre-
quencies from 920.625MHz to 924.375MHz with a channel
bandwidth of 250 KHz. The transmission power is set at
30 dBm, with a TX-RX distance of 7 cm for RF-Egg-S and
1 cm for RF-Egg-P , respectively.
Data collection. To evaluate RF-Egg, we conducted three
iterations of the egg incubation process, yielding a total
of 63 × 3 = 189 candidate eggs. These eggs, chosen to be
as diverse as possible in terms of weight and shape, are
outlined in Table 2. The groundtruth is determined based on
the condition of the eggs at the end of the incubation process,
along with the candlelight detection procedure. Under both
the Stationary and Portable settings, we collect data at 10 AM
and 10 PM each day, five samples for each time, over a 21-day
incubation cycle, accumulating a total of 189× (5 + 5) × 21 =
39, 690 samples. For each task, we randomly designate 80%
sample data as the training set, while the remaining 20%

4Ethical consideration: Animal ethical approval has been granted by the cor-
responding organization. All the hatched chickens were properly handled.

data forms the test set, with a guarantee that there is no
intersection between the two sets.
Performance metrics. The performance metrics are as fol-
lows:

• Accuracy (Acc.): the ratio of correctly classified samples
over the total number of samples, used for the three tasks.

• False Reject Rate (FRR): the ratio that a normal breeding
egg is classified as a non-fertilized/early-mortal one, used
for Task 1 and Task 3.

• Mean Absolute Deviation (MAD): the daily-based mean
deviation between classified results and the true labels,
used specially for Task 2.

7.2 Overall Performance
Fig. 13, 14 and 15 illustrate the overall performance of RF-
Egg with respect to three tasks, across varying numbers of
multi-targets (i.e., 1, 4, 9, 16) under two distinct settings.
Result of Task 1. For Task 1, RF-Egg has achieved promis-
ing results across varying numbers of multi-targets, i.e., an
average Acc. of 95.8% and 96.7%, and an average FRR of 1.7%
and 1.3%, for RF-Egg-S and RF-Egg-P , respectively. With one
single sensing target, the Acc. of RF-Egg-S and RF-Egg-P is
97.7% and 98.3%, respectively. However, it drops to 93.1%
for RF-Egg-S and 94.4% for RF-Egg-P when sensing 16 tar-
gets simultaneously. In parallel, the FRR for RF-Egg-S and
RF-Egg-P with a single target is 0.8% and 0.5%, respectively,
but rises to 2.8% for RF-Egg-S and 2.3% for RF-Egg-P with 16
targets. It can be observed that the performance decreases
in both metrics as the number of multi-targets grows due to
the introduction of more complex multipath environments
and signal interference. Additionally, the slightly inferior
performance of RF-Egg-S compared to RF-Egg-P is primarily
attributed to the longer distance and no egg fixation settings.
Result of Task 2. For Task 2, RF-Egg has achieved an aver-
age Acc. of 91.2% and 92.4%, along with an average MAD of
0.7 and 0.6, for RF-Egg-S and RF-Egg-P , respectively. Specif-
ically, the Acc. and MAD curves for RF-Egg-S and RF-Egg-P
follow an increasing and decreasing pattern as the multi-
target number increases from 1 to 16. The Acc. is 84.4% for
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Table 2: Summary of candidate eggs.

Physical Property Density Shape Index (SI) Incubation Condition (Groundtruth)

Mass (g) Length (mm) Width (mm) <0.72 0.72–0.76 >0.76 Non-Fertilized Fertilized Early-Mortal

Detail 44.3–63.4 (52.9) 49.1–54.7 (52.6) 37.6–42.1 (39.2) 53 107 29 18 137 34

SI is a geometric parameter defined as the ratio of width to length [1], generally sharp eggs (<0.72), standard eggs (0.72–0.76) and round eggs (>0.76). Mean values are presented
in parentheses.

Fig. 13: Result of Task 1. Fig. 14: Result of Task 2. Fig. 15: Result of Task 3. Fig. 16: Impact of tag location.

Fig. 17: Impact of tag-tag distance. Fig. 18: Impact of reader-tag distance. Fig. 19: Impact of data source. Fig. 20: Impact of multipath.

RF-Egg-S and 86.3% for RF-Egg-P with one single sensing tar-
get, but it grows to 95.6% and 96.1% when sensing 16 targets.
The main reason for this trend is that we utilize GM as the
feature map for Task 2, where multiple eggs contribute to
the result, providing reliability and robustness for RF-Egg.
Similarly, the MAD for RF-Egg-S and RF-Egg-P with one sin-
gle target is 0.9 and 0.8, respectively, but decreases to 0.3 for
RF-Egg-S and 0.2 for RF-Egg-P with 16 targets.
Result of Task 3. Similarly for Task 3, RF-Egg has achieved
an average Acc. of 91.2% and 92.7%, along with an average
FRR of 3.6% and 3.1%, for RF-Egg-S and RF-Egg-P , respectively.
When sensing one target, RF-Egg-S and RF-Egg-P achieve an
Acc. of 94.2% and 94.6%, respectively. However, when sensing
16 targets, there is a decline in performance, dropping to
87.4% for RF-Egg-S and 90.1% for RF-Egg-P . The FRR for RF-
Egg-S and RF-Egg-P is 2.3% and 2.2%, while it escalates to
4.9% and 4.3% when sensing 16 targets.

7.3 Micro-benchmarking
We now evaluate the performance of RF-Egg with respect
to different tag locations, tag-tag distances, reader-tag dis-
tances, data sources, and multipath levels.

7.3.1 Impact of Tag Location. Fig. 16 illustrates the perfor-
mance of RF-Egg-P in Task 1 across 16 different tag locations
in the tag array Γ with the size of ℎ ×𝑤 (ℎ = 𝑤 = 4). It is ob-
served that the Acc. fluctuates depending on the tag positions,
albeit the variations are not drastically large. Tags situated
at the center of the tag array slightly exhibit superior perfor-
mance compared to those at the edges. Quantitatively, the
centrally four positioned tags attain an average Acc. of 98.9%,
excelling the 92.9% achieved by the edge-located tags. This
discrepancy can be attributed to the fact that the edge tags
tend to yield sparse and unstable RFID response sequences.

7.3.2 Impact of Tag-Tag Distance. Fig. 17 illustrates the per-
formance of RF-Egg-S in Task 2 across different tag-tag dis-
tanceswith respect to four distances of 21mm, 32mm, 43mm
(default one), and 54mm. We can observe that the perfor-
mance of RF-Egg-S is significantly influenced by the distance
between tags. At the shortest distance of 21mm, the Acc.
and MAD are 80.3% and 1.7, respectively. However, when
the distance is extended to 43mm, there is a noticeable im-
provement in performance, with the Acc. surging to 95.6%
and the MAD reducing to 0.3. This can be ascribed that the
proximity of the eggs influences the weak coupling effect
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between the tag and its corresponding targets, resulting in
suboptimal performance. However, it is noted that overly
large distances present their own set of challenges, primarily
due to the limited beam range of the directional antenna and
communication complications with the edge label. This is
manifested by a decrease in Acc. to 88.8% and MAD to 0.8 at
a distance of 54mm.

7.3.3 Impact of Reader-Tag Distance. Fig. 18 showcases the
performance of RF-Egg-S in Task 2 across different reader(’s
antenna)-tag distances, specifically at four distances 7 cm
(default one), 10 cm, 15 cm, and 30 cm. We can observe that
the Acc. curves and MAD curves of RF-Egg-S show a decreas-
ing and increasing trend as reader-tag distances increase,
respectively. At a distance of 7 cm, RF-Egg-S achieves an Acc.
of 95.6% and a MAD of 0.3. However, at a distance of 30 cm,
the performance decreases, with the Acc. dropping to 76.4%
and the MAD rising to 2.0. This performance degradation is
primarily due to the RFID backscatter signal becoming weak
at larger distances, which can even lead to communication
breakdowns. However, this issue can be mitigated through
hardware substitution, enabling RF-Egg to operate effectively
at more desirable distances.

7.3.4 Impact of Data Source. Fig. 19 showcases the perfor-
mance of RF-Egg in Task 2 under varying numbers of chan-
nels in the feature map, spanning from 1 to 5. The Acc. and
MAD curves of RF-Egg display an ascending and descending
trend as the number of channels increases, but start to level
off when the channel count reaches 3. This can be attributed
to the ideally linearly-varying phase data across multiple
RFID hopping channels as elaborated in §5.1. Specifically,
increasing the number of channels can enhance the stabil-
ity of the feature map, but it does not contribute additional
insightful information.

7.3.5 Impact of Multipath. Fig. 20 illustrates the perfor-
mance of RF-Egg-P in three distinct environments: a lab-
oratory, a library, and a hall, which represents a decreasing
level of multipath interference. We can observe RF-Egg-P
with the proposed multipath combating algorithm achieves
a stable average Acc. of 96.3% and MAD of 0.2. While RF-Egg-
P without the algorithm experiences a slight improvement in
performance in environments with diminished multipath in-
terference, from 90.3% to 95.9% in Acc. and from 0.7 to 0.2 in
MAD. This implies that RF-Egg-P is sensitive to the external
environment and can benefit from multipath combating.

7.4 Field Study
Experimental setup in field study. As shown in Fig. 21,
we conducted a field study of RF-Egg at a local egg hatchery
under the guidance of professionals over three days. Specifi-
cally, we used RF-Egg-P configuration to measure 80 eggs per

(a) Egg Hatchery (Exterior)
(b) Egg Hatchery 

(Interior)

Fig. 21: Field study. Fig. 22: Result of field
study.

day (a total of 240 ones) in an empty room under single-target
settings. We measured each egg three times a day, taking
two samples each time. These samples were processed as
feature maps for the corresponding tasks, and then fed into
our trained network for testing. It is noted that, for Task
2, we use Soft Accuracy (SAcc.) as the performance metric,
which is defined as the ratio of the samples that are classified
within two classes adjacent to their true labels over the total
number of samples.
Results of field study. Fig. 22 showcases the results of our
field study. Specifically, for Task 1, we achieved an Acc. of
90.6% and FRR of 3.4%. For Task 2, we obtained an SAcc. of
84.3% and MAD of 1.6. For Task 3, these metrics were 84.1%
and 6.5%, respectively. These results affirm the effectiveness
of RF-Egg in the modern poultry industry.

8 LIMITATIONS AND FUTUREWORKS
We briefly delve into a few of concerns below.
Robustness. Robustness poses a significant challenge in
wireless sensing, as the data measurement can be influenced
by the experimental setup (e.g., stationary/portable settings
and collection time), target properties (e.g., size/weight and
flip), and environmental conditions (e.g., temperature/humidity
and multipath). Thus, the performance of RF-Egg may be con-
strained by the accuracy of the data measurement, given that
the phase readings of RF signals are fine-grained but also
highly sensitive. In industrial deployments, enhanced per-
formance can be likely achieved with more precise settings.
Distance challenge. Both the tag-tag and reader-tag dis-
tances have a substantial impact on sensing accuracy, given
the fine-grained nature of egg incubation sensing. Interfer-
ence is more likely to occur at close tag-to-tag distances,
which can potentially degrade performance. Similarly, at
longer reader-to-tag distances, communication breakdowns
are more likely, which could also negatively affect the sys-
tem’s efficacy and limit its practical usage. Though substi-
tuting the hardware may address these issues, we choose to
explore other potential solutions in our future works.
Applications in poultry industry. RF-Egg, as a proof of
concept, delves into the potential of RF signals in the field of
chicken egg incubation sensing, showcasing its potential for
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various aspects of the poultry industry. For example, when
extrapolating this to the eggs of other species, the designed
three tasks and their respective solutions still remain appli-
cable. This suggests the potential versatility and scalability
of RF-Egg, making it a valuable tool in the advancement of
the modern poultry industry. In the meantime, the real-time
capability still requires to be explored.

9 RELATEDWORKS
In this section, we briefly review several aspects of related
work.
Incubation-related sensing. Current incubation-related
sensing works are primarily designed for egg fertility detec-
tion, involving vision-based and sensor-based ones. Tradi-
tional vision-based methods utilize embryo candling [14, 39],
hyper-spectral imaging [28], and thermal imaging [25] to
acquire high-resolution image data for classification tasks.
Saifullah et al. [39] extracted Gray-Level Co-occurrence Ma-
trix (GLCM) based on the candling images for Support Vector
Machine (SVM) to perform egg fertility detection on day 5 of
incubation. Similarly, Liu et al. [28] first segmented the Re-
gion Of Interest (ROI) of hyper-spectral and then extracted
MS (mean spectra of ROI) and MG (mean spectra of the
Gabor-filtered ROI) for further classification. While sensor-
based methods focus on the variation of inherent properties
during incubation with respect oxygen flux [37], resonance
analysis [6], dielectric properties [15], spectral analysis [10].
Wang et al. [37] concluded there is a significant difference
in gas exchange rates between fertilized and non-fertilized
eggs. Coucke et al. [6] measured the frequency response of
a chicken egg excited with an impact excitation to detect
egg fertility on day 5 of incubation. Differently, RF-Egg is the
first RF-based work achieving multi-target and multi-task
egg incubation sensing, possessing the characteristics of non-
intrusiveness, high-responsiveness, and well-usability.
RFID sensing. The sensing potential of RFID has garnered
significant attention for a long time, particularly in the ar-
eas of fine-grained tracking [22, 23], localization [9, 45],
material identification [47, 50], and gesture sensing [52].
OmniTrack [22] achieves tracking accuracy by quantify-
ing the respective impact of the read-tag distance and the
tag’s orientation at the centimeter-level. Tagtag [50] and
RF-EATS [16] leverage the weak coupling effects that the
tag antenna impedance changes when interacting with the
target to achieve different material identification. While
TagScan [47] captures different amounts of RSS and phase
variation when RF signals penetrate different materials. EU-
IGR [52] extracts the environment and user invariant features
fromRSS and phase readings through adversarial learning for
gesture recognition. RF-DNA [35] achieves physical-layer
identification by proposing a novel hardware fingerprint

representing the tag’s intrinsic response at some frequency.
Additionally, RFID technology has also been applied for soil
moisture sensing [46], temperature sensing [36], infusion
drip rate monitoring [26], user authentication [27], etc. Com-
paredwith these works, RF-Egg fills the gap of egg incubation
sensing.
Other wireless signal sensing. Apart from RFID technol-
ogy, other wireless signals with different frequency bands
have been explored for their sensing capabilities, such as
Wi-Fi [13, 21, 41, 48], radar [18, 20, 38], LoRa [51, 55], acous-
tic [5, 11, 29], ZigBee [54], etc. For example, DroneScale [31]
achieves drone load sensing by leveraging the RF signals
transmitted by commercial drones. mmRipple [7] empow-
ers the communication capability between mmWave radar
and vibrating smartphone. Mobi2Sense [56] achieves UWB
sensing capability under device motions. In addition, Ap-
pListener [32] leverages the RF energy in network traffic to
recognize mobile app activities.

10 CONCLUSION
This paper presents the design, implementation, and evalua-
tion of RF-Egg, to achieve fine-grainedmulti-target andmulti-
task egg incubation sensing, which possesses the character-
istics of non-intrusiveness, high-responsiveness, and well-
usability. RF-Egg utilizes an RFID tag array where each tag
corresponds to each egg, and leverages the low-level phase
readings to achieve egg incubation sensing with respect
to fertility, incubation status, and early mortality. Specifi-
cally, we propose a multipath combating algorithm to ex-
tract the target-induced signal component and address non-
uniformity issues across multiple tags. Subsequently, we
design an MTT network to consider task-specific input, net-
work architecture, and task imbalance problems. The experi-
ment results show that RF-Egg can achieve an accuracy of
94.4%, 96.1%, and 90.1% for the three tasks when supporting
16 targets simultaneously. Additionally, our field study sug-
gests that RF-Egg holds significant potential for the modern
poultry industry.
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